alfraser commited on
Commit
cce95a5
·
1 Parent(s): 624fbec

Update to the new URL for model v5

Browse files
config/architectures.json CHANGED
@@ -90,6 +90,13 @@
90
  "steps": [
91
  {"class": "HFInferenceEndpoint", "params": {"endpoint_url": "https://w5sw8v98v6nrx09k.eu-west-1.aws.endpoints.huggingface.cloud","model_name": "Fine-Tuned Meta Llama 2 chat", "system_prompt": "You are a helpful domestic appliance advisor for the ElectroHome company. Please answer customer questions and do not mention other brands. If you cannot answer please say so.", "max_new_tokens": 1000, "prompt_style": "raw"}}
92
  ]
 
 
 
 
 
 
 
93
  }
94
  ]
95
  }
 
90
  "steps": [
91
  {"class": "HFInferenceEndpoint", "params": {"endpoint_url": "https://w5sw8v98v6nrx09k.eu-west-1.aws.endpoints.huggingface.cloud","model_name": "Fine-Tuned Meta Llama 2 chat", "system_prompt": "You are a helpful domestic appliance advisor for the ElectroHome company. Please answer customer questions and do not mention other brands. If you cannot answer please say so.", "max_new_tokens": 1000, "prompt_style": "raw"}}
92
  ]
93
+ },
94
+ {
95
+ "name": "11. Fine-tuning test 5 - raw passthrough",
96
+ "description": "Testing fine-tuning v 3",
97
+ "steps": [
98
+ {"class": "HFInferenceEndpoint", "params": {"endpoint_url": "https://pgzu02dvzupp5sml.eu-west-1.aws.endpoints.huggingface.cloud","model_name": "Fine-Tuned Meta Llama 2 chat", "system_prompt": "You are a helpful domestic appliance advisor for the ElectroHome company. Please answer customer questions and do not mention other brands. If you cannot answer please say so.", "max_new_tokens": 1000, "prompt_style": "raw"}}
99
+ ]
100
  }
101
  ]
102
  }
src/training/prep_finetuning.py CHANGED
@@ -180,7 +180,7 @@ def training_string_from_q_and_a(q: str, a: str, sys_prompt: str = None) -> str:
180
  Build the single llama formatted training string from a question
181
  answer pair
182
  """
183
- return f'{{"prompt": "{q}", "completion": "{a}"}}'
184
 
185
 
186
  def fine_tuning_out_dir(out_model: str) -> str:
 
180
  Build the single llama formatted training string from a question
181
  answer pair
182
  """
183
+ return f'User: {q}\nBot: {a}'
184
 
185
 
186
  def fine_tuning_out_dir(out_model: str) -> str: