Spaces:
Sleeping
Sleeping
Upload scripts/api.py with huggingface_hub
Browse files- scripts/api.py +67 -0
scripts/api.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.append(sys.path[0].replace('scripts', ''))
|
3 |
+
import os
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
from fastapi import FastAPI, HTTPException
|
7 |
+
from pydantic import BaseModel
|
8 |
+
from scripts.run import config, search_engine
|
9 |
+
from scripts.preprocess import preprocess_text
|
10 |
+
|
11 |
+
app = FastAPI(
|
12 |
+
title="Prompt Search API",
|
13 |
+
description="A RESTful API to find top-n most similar prompts.",
|
14 |
+
version="1.0.0"
|
15 |
+
)
|
16 |
+
|
17 |
+
class QueryRequest(BaseModel):
|
18 |
+
query: str
|
19 |
+
n_results: int = 5
|
20 |
+
|
21 |
+
class SimilarQuery(BaseModel):
|
22 |
+
prompt: str
|
23 |
+
score: float
|
24 |
+
|
25 |
+
class QueryResponse(BaseModel):
|
26 |
+
query: str
|
27 |
+
similar_queries: List[SimilarQuery]
|
28 |
+
|
29 |
+
@app.get("/")
|
30 |
+
def root():
|
31 |
+
return {"message": "Welcome to the Prompt Search API. Use '/search' endpoint to find similar prompts."}
|
32 |
+
|
33 |
+
@app.post("/search", response_model=QueryResponse)
|
34 |
+
async def search_prompts(query_request: QueryRequest):
|
35 |
+
"""
|
36 |
+
Accepts a query prompt and returns the top n similar prompts.
|
37 |
+
Args:
|
38 |
+
query_request: JSON input with query prompt and number of results to return.
|
39 |
+
Returns:
|
40 |
+
A list of top-n similar prompts with similarity scores.
|
41 |
+
"""
|
42 |
+
|
43 |
+
query = query_request.query
|
44 |
+
n_results = query_request.n_results
|
45 |
+
|
46 |
+
if not query.strip():
|
47 |
+
raise HTTPException(status_code=400, detail="Query prompt cannot be empty.")
|
48 |
+
if n_results <= 0:
|
49 |
+
raise HTTPException(status_code=400, detail="Number of results must be greater than zero.")
|
50 |
+
|
51 |
+
try:
|
52 |
+
q = preprocess_text(query)
|
53 |
+
print(q)
|
54 |
+
results = search_engine.most_similar(q, n=n_results)
|
55 |
+
|
56 |
+
print("Results:", results) # Check if results have expected structure
|
57 |
+
result_dict = [{"prompt": r['prompt'], "score": float(r['score'])} for r in results]
|
58 |
+
return QueryResponse(query=query, similar_queries=result_dict)
|
59 |
+
# return [{"query": query, "similar_queries": results}]
|
60 |
+
except Exception as e:
|
61 |
+
print(e)
|
62 |
+
raise HTTPException(status_code=500, detail=str(e))
|
63 |
+
|
64 |
+
# Entry point for configuring parameters and running the app
|
65 |
+
if __name__ == "__main__":
|
66 |
+
import uvicorn
|
67 |
+
uvicorn.run(app, host = config["server"]["host"], port = int(os.getenv("PORT", config["server"]["port"])))
|