alexkueck commited on
Commit
040922d
·
verified ·
1 Parent(s): ae8235e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -7
app.py CHANGED
@@ -424,6 +424,7 @@ def generate_text_zu_doc(file, prompt, k, rag_option, chatbot, history, db):
424
  #mit oder ohne RAG möglich
425
  def generate_text (prompt, chatbot, history, rag_option, model_option, openai_api_key, db, k=3, top_p=0.6, temperature=0.5, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3, top_k=35):
426
  global splittet
 
427
  suche_im_Netz="Antwort der KI ..."
428
  print("Text pur..............................")
429
  if (openai_api_key == "" or openai_api_key == "sk-"):
@@ -465,6 +466,7 @@ def generate_text (prompt, chatbot, history, rag_option, model_option, openai_ap
465
  #llm = HuggingFaceTextGenInference( inference_server_url="http://localhost:8010/", max_new_tokens=max_new_tokens,top_k=10,top_p=top_p,typical_p=0.95,temperature=temperature,repetition_penalty=repetition_penalty,)
466
  #llm via HuggingChat
467
  llm = hugchat.ChatBot(cookies=cookies.get_dict())
 
468
 
469
  print("HF")
470
  #Prompt an history anhängen und einen Text daraus machen
@@ -473,16 +475,11 @@ def generate_text (prompt, chatbot, history, rag_option, model_option, openai_ap
473
  #zusätzliche Dokumenten Splits aus DB zum Prompt hinzufügen (aus VektorDB - Chroma oder Mongo DB)
474
  if (rag_option == "An"):
475
  print("LLM aufrufen mit RAG: ...........")
476
- result = rag_chain(llm, history_text_und_prompt, db)
477
- #elif (rag_option == "MongoDB"):
478
- #splits = document_loading_splitting()
479
- #document_storage_mongodb(splits)
480
- #db = document_retrieval_mongodb(llm, history_text_und_prompt)
481
- #result = rag_chain(llm, history_text_und_prompt, db)
482
  else:
483
  #splittet = False
484
  print("LLM aufrufen ohne RAG: ...........")
485
- resulti = llm_chain(llm, history_text_und_prompt)
486
  result = resulti.strip()
487
  """
488
  #Alternativ mit API_URL - aber das model braucht 93 B Space!!!
 
424
  #mit oder ohne RAG möglich
425
  def generate_text (prompt, chatbot, history, rag_option, model_option, openai_api_key, db, k=3, top_p=0.6, temperature=0.5, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3, top_k=35):
426
  global splittet
427
+ hugchat=False
428
  suche_im_Netz="Antwort der KI ..."
429
  print("Text pur..............................")
430
  if (openai_api_key == "" or openai_api_key == "sk-"):
 
466
  #llm = HuggingFaceTextGenInference( inference_server_url="http://localhost:8010/", max_new_tokens=max_new_tokens,top_k=10,top_p=top_p,typical_p=0.95,temperature=temperature,repetition_penalty=repetition_penalty,)
467
  #llm via HuggingChat
468
  llm = hugchat.ChatBot(cookies=cookies.get_dict())
469
+ hugchat=True #da dieses Model in llm_chain bzw reag_chain anderes verarbeitet wird
470
 
471
  print("HF")
472
  #Prompt an history anhängen und einen Text daraus machen
 
475
  #zusätzliche Dokumenten Splits aus DB zum Prompt hinzufügen (aus VektorDB - Chroma oder Mongo DB)
476
  if (rag_option == "An"):
477
  print("LLM aufrufen mit RAG: ...........")
478
+ result = rag_chain(llm, history_text_und_prompt, db, hugchat)
 
 
 
 
 
479
  else:
480
  #splittet = False
481
  print("LLM aufrufen ohne RAG: ...........")
482
+ resulti = llm_chain(llm, history_text_und_prompt, hugchat)
483
  result = resulti.strip()
484
  """
485
  #Alternativ mit API_URL - aber das model braucht 93 B Space!!!