import requests
import os, sys, json
import gradio as gr
import openai
from openai import OpenAI
import time
import re
import io
from PIL import Image, ImageDraw, ImageOps, ImageFont
import base64
import tempfile
from tavily import TavilyClient
from langchain.chains import LLMChain, RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader, WebBaseLoader, UnstructuredWordDocumentLoader, DirectoryLoader
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import OpenAIWhisperParser
from langchain.schema import AIMessage, HumanMessage
from langchain.llms import HuggingFaceHub
from langchain.llms import HuggingFaceTextGenInference
from langchain.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings
from langchain.retrievers.tavily_search_api import TavilySearchAPIRetriever
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from chromadb.errors import InvalidDimensionException
from utils import *
from beschreibungen import *
#from langchain.vectorstores import MongoDBAtlasVectorSearch
#from pymongo import MongoClient
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
###############################################
#globale Variablen
##############################################
#nur bei ersten Anfrage splitten der Dokumente - um die Vektordatenbank entsprechend zu füllen
splittet = False
#für eine Session werden die chatsverläufe hier gespeichert...
chats={}
##################################################
#Für MongoDB statt Chroma als Vektorstore
#MONGODB_URI = os.environ["MONGODB_ATLAS_CLUSTER_URI"]
#client = MongoClient(MONGODB_URI)
#MONGODB_DB_NAME = "langchain_db"
#MONGODB_COLLECTION_NAME = "gpt-4"
#MONGODB_COLLECTION = client[MONGODB_DB_NAME][MONGODB_COLLECTION_NAME]
#MONGODB_INDEX_NAME = "default"
#Plattform Keys aus den Secrets holen zu diesem Space
HUGGINGFACEHUB_API_TOKEN = os.getenv("HF_ACCESS_READ")
OAI_API_KEY=os.getenv("OPENAI_API_KEY")
HEADERS = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"}
TAVILY_KEY = os.getenv("TAVILY_KEY")
os.environ["TAVILY_API_KEY"] = TAVILY_KEY
################################################
#LLM Model mit dem gearbeitet wird
#openai-------------------------------------
#MODEL_NAME = "gpt-3.5-turbo-16k"
#MODEL_NAME = "gpt-3.5-turbo-1106"
MODEL_NAME= "gpt-4-1106-preview"
MODEL_NAME_IMAGE = "gpt-4-vision-preview"
#verfügbare Modelle anzeigen lassen
#HuggingFace Reop ID--------------------------------
#repo_id = "meta-llama/Llama-2-13b-chat-hf"
repo_id = "HuggingFaceH4/zephyr-7b-alpha" #das Modell ist echt gut!!! Vom MIT
#repo_id = "TheBloke/Yi-34B-Chat-GGUF"
#repo_id = "meta-llama/Llama-2-70b-chat-hf"
#repo_id = "tiiuae/falcon-40b"
#repo_id = "Vicuna-33b"
#repo_id = "alexkueck/ChatBotLI2Klein"
#repo_id = "mistralai/Mistral-7B-v0.1"
#repo_id = "internlm/internlm-chat-7b"
#repo_id = "Qwen/Qwen-7B"
#repo_id = "Salesforce/xgen-7b-8k-base"
#repo_id = "Writer/camel-5b-hf"
#repo_id = "databricks/dolly-v2-3b"
#repo_id = "google/flan-t5-xxl"
#HuggingFace Model name--------------------------------
MODEL_NAME_HF = "mistralai/Mixtral-8x7B-Instruct-v0.1"
MODEL_NAME_OAI_ZEICHNEN = "dall-e-3"
#Alternativ zeichnen: Stabe Diffusion from HF:
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1"
################################################
#HF Hub Zugriff ermöglichen
###############################################
os.environ["HUGGINGFACEHUB_API_TOKEN"] = HUGGINGFACEHUB_API_TOKEN
################################################
#OpenAI Zugang, client und Assistant einmal erzeugen.
################################################
#zentral einmal erzeugen!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
client = OpenAI()
general_assistant_file = client.beta.assistants.create(name="File Analysator",instructions=template, model="gpt-4-1106-preview",)
thread_file = client.beta.threads.create()
general_assistant_suche= openai_assistant_suche(client)
#################################################
#################################################
#################################################
#Funktionen zur Verarbeitung
################################################
##############################################
#wenn löschen Button geklickt
def clear_all(history):
global chats
dic_history = {schluessel: wert for schluessel, wert in history}
summary = "\n\n".join(f'{schluessel}: \n {wert}' for schluessel, wert in dic_history.items())
#schlagwort finden zu dem chatverlauf
headers, payload = process_chatverlauf(summary, MODEL_NAME, OAI_API_KEY)
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
#als json ausgeben
data = response.json()
# Den "content" auswählen, da dort die Antwort der Ki enthalten ist
result = data['choices'][0]['message']['content']
#chat hinzufügen zu den chatverläufen und in GUI anzeigen
id_neu = str(len(chats)+1) + "_" + result
#chats ist ein dictionary
chats[id_neu]= summary
return None, gr.Image(visible=False), [], gr.CheckboxGroup(label="", choices=update_chat_options()), gr.File(visible=False)
#########################################
# Funktionen, um vergangene Chats anzuzeigen und zum Download anzubieten
def update_chat_options():
global chats
# Diese Funktion aktualisiert die verfügbaren Chat-Optionen
if chats != {}:
return list(chats.keys())
else:
return None
def download_chats(selected_chats):
global chats
if chats != {}:
# Diese Funktion bereitet die ausgewählten Chats zum Download vor
data = "\n\n".join(chats[chat] for chat in selected_chats)
# Dateipfad festlegen (hier wird die Datei im aktuellen Verzeichnis gespeichert)
file_path = 'data/chatverlauf.txt'
# Datei im Schreibmodus öffnen (erstellt die Datei, wenn sie nicht existiert)
with open(file_path, 'w') as file:
# String in die Datei schreiben
file.write(data)
return gr.File(file_path, label="Download-Chat", visible = True, show_label=True)
else:
return gr.File(visible=False)
##############################################
#History - die Frage oder das File eintragen...
#in history_file ist ein file gespeichert, falls voher im Verlauf schon ein File hochgeladen wurde.
#wird ein neuer File hochgeladen, so wird history_fiel dadurch ersetzt
def add_text(chatbot, history, prompt, file, file_history):
if (file == None):
chatbot = chatbot +[(prompt, None)]
else:
file_history = file
if (prompt == ""):
chatbot=chatbot + [((file.name,), "Prompt fehlt!")]
else:
ext = analyze_file(file)
if (ext == "png" or ext == "PNG" or ext == "jpg" or ext == "jpeg" or ext == "JPG" or ext == "JPEG"):
chatbot = chatbot +[((file.name,), None), (prompt, None)]
else:
chatbot = chatbot +[("Hochgeladenes Dokument: "+ get_filename(file) +"\n" + prompt, None)]
return chatbot, history, prompt, file, file_history, gr.Image(visible = False), "" #gr.Image( label=None, size=(30,30), visible=False, scale=1) #gr.Textbox(value="", interactive=False)
def add_text2(chatbot, prompt):
if (prompt == ""):
chatbot = chatbot + [("", "Prompt fehlt!")]
else:
chatbot = chatbot + [(prompt, None)]
print("chatbot nach add_text............")
print(chatbot)
return chatbot, prompt, ""
############################################
#nach dem Upload soll das zusätzliche Fenster mit dem image drinnen angezeigt werden
def file_anzeigen(file):
ext = analyze_file(file)
if (ext == "png" or ext == "PNG" or ext == "jpg" or ext == "jpeg" or ext == "JPG" or ext == "JPEG"):
return gr.Image(width=47, visible=True, interactive = False, height=47, min_width=47, show_label=False, show_share_button=False, show_download_button=False, scale = 0.5), file, file
else:
return gr.Image(width=47, visible=True, interactive = False, height=47, min_width=47, show_label=False, show_share_button=False, show_download_button=False, scale = 0.5), "data/file.png", file
def file_loeschen():
return None, gr.Image(visible = False)
############################################
#wenn 'Stop' Button geklickt, dann Message dazu und das Eingabe-Fenster leeren
def cancel_outputing():
reset_textbox()
return "Stop Done"
def reset_textbox():
return gr.update(value=""),""
##########################################
#Hilfsfunktion, um ein von Stable Diffusion erzeugtes Bild für die Ausgabe in der History vorzubereiten
def umwandeln_fuer_anzeige(image):
buffer = io.BytesIO()
image.save(buffer, format='PNG')
return buffer.getvalue()
##################################################
#openassistant um uploaded Files zu analysieren
def create_assistant_file(prompt, file):
global client, general_assistant_file
#neues File dem Assistant hinzufügen
file_neu = client.files.create(file=open(file,"rb",),purpose="assistants",)
# Update Assistant
#wenn type: code_interpreter, wird das file mit angehängt an den Prpmt, aber vorher nicht bearbeitet
#wenn type: retrieval, wird das Dokument vorher embedded in einem vektorstore und nur entsprechende chunks mitgegeben.
#pro Assistant 20 cent pro Tag als Nutzung - egal wie viele Fragen dazu.
updated_assistant = client.beta.assistants.update(general_assistant_file.id,tools=[{"type": "code_interpreter"}, {"type": "retrieval"}],file_ids=[file_neu.id],)
thread_file, run = create_thread_and_run(prompt, client, updated_assistant.id)
run = wait_on_run(run, thread_file, client)
response = get_response(thread_file, client, updated_assistant.id)
result = response.data[1].content[0].text.value
return result
##################################################
#openassistant um im Netz zu suchen
def create_assistant_suche(prompt):
#global client, general_assistant_suche
retriever = TavilySearchAPIRetriever(k=4)
result = retriever.invoke(template + prompt)
erg = "Aus dem Internet: " + result[0].page_content + ".\n Quelle: "
src = result[0].metadata['source']
"""
#neues Thread mit akt. prompt dem Assistant hinzufügen
thread_suche, run = create_thread_and_run(prompt, client, general_assistant_suche.id)
run = wait_on_run(run, thread_suche, client)
response = get_response(thread_suche, client, general_assistant_suche.id)
result = response.data[1].content[0].text.value
"""
return erg + src
###################################################
#Funktion von Gradio aus, die den dort eingegebenen Prompt annimmt und weiterverarbeitet
###################################################
#########################################################
#Funktion wird direkt aufgerufen aus der GUI - von hier muss auch die Rückmeldung kommen....
#man kann einen Text-Prompt eingeben (mit oder ohne RAG), dazu ein Image hochladen, ein Bild zu einem reinen textprompt erzeugen lassen
def generate_auswahl(prompt, file, file_history, chatbot, history, rag_option, model_option, openai_api_key, k=3, top_p=0.6, temperature=0.5, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3,):
global splittet
#wenn RAG angeschaltet - Vektorstore initialisieren
#aber nur, wenn es noch nicht geshehen ist (splittet = False)
#falls schon ein File hochgeladen wurde, ist es in history_file gespeichert - falls ein neues File hochgeladen wurde, wird es anschließend neu gesetzt
neu_file = file_history
if (rag_option == "An"):
#muss nur einmal ausgeführt werden...
if not splittet:
splits = document_loading_splitting()
document_storage_chroma(splits)
db = document_retrieval_chroma2()
splittet = True
else:
db=None
splittet = False
#kein Bild hochgeladen -> auf Text antworten...
status = "Antwort der KI ..."
if (file == None and file_history == None):
result, status = generate_text(prompt, chatbot, history, rag_option, model_option, openai_api_key, db, k=3, top_p=0.6, temperature=0.5, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3,)
history = history + [[prompt, result]]
else:
#Es wurde ein File neu angehängt -> wenn prompt dazu, das Bild analysieren
#das history_fiel muss neu gesetzt werden
if (file != None):
# file_history wird neu gesetzt in der Rückgabe dieser Funktion...
neu_file = file
#herausfinden, ob Bild oder Dokument...
ext = analyze_file(neu_file)
if (ext == "png" or ext == "PNG" or ext == "jpg" or ext == "jpeg" or ext == "JPG" or ext == "JPEG"):
result= generate_text_zu_bild(neu_file, prompt, k, rag_option, chatbot, history, db)
else:
result = generate_text_zu_doc(neu_file, prompt, k, rag_option, chatbot, history, db)
#die history erweitern - abhängig davon, ob gerade ein file hochgeladen wurde oder nicht
if (file != None):
history = history + [[(file,), None],[prompt, result]]
else:
history = history + [[prompt, result]]
chatbot[-1][1] = ""
for character in result:
chatbot[-1][1] += character
time.sleep(0.03)
yield chatbot, history, None, neu_file, status
if shared_state.interrupted:
shared_state.recover()
try:
yield chatbot, history, None, neu_file, "Stop: Success"
except:
pass
##################################################
#zu einem Text-Prompt ein Bild via Stable Diffusion generieren
def generate_bild(prompt, chatbot, model_option_zeichnen='HuggingFace', temperature=0.5, max_new_tokens=4048,top_p=0.6, repetition_penalty=1.3):
global client
if (model_option_zeichnen == "Stable Diffusion"):
print("Bild Erzeugung HF..............................")
#Bild nach Anweisung zeichnen und in History darstellen...
data = {"inputs": prompt}
response = requests.post(API_URL, headers=HEADERS, json=data)
print("fertig Bild")
result = response.content
#Bild ausgeben
image = Image.open(io.BytesIO(result))
image_64 = umwandeln_fuer_anzeige(image)
chatbot[-1][1]= "".format(base64.b64encode(image_64).decode('utf-8'))
else:
print("Bild Erzeugung DallE..............................")
#als Format ginge auch 'url', n - Anz. der erzeugten Bilder
response = client.images.generate(model="dall-e-3",prompt=prompt,size="1024x1024",quality="standard",n=1, response_format='b64_json')
#chatbot[-1][1]= "".format(base64.b64encode(image_64).decode('utf-8'))
chatbot[-1][1] = "".format(response.data[0].b64_json)
return chatbot, "Antwort KI: Success"
##################################################
#zu einem Bild und Text-Prompt eine Analyse generieren
def generate_text_zu_bild(file, prompt, k, rag_option, chatbot, history, db):
global splittet
print("Text mit Bild ..............................")
prompt_neu = generate_prompt_with_history(prompt, history)
if (rag_option == "An"):
print("Bild mit RAG..............................")
neu_text_mit_chunks = rag_chain2(prompt, db, k)
#für Chat LLM:
#prompt = generate_prompt_with_history_openai(neu_text_mit_chunks, history)
#als reiner prompt:
prompt_neu = generate_prompt_with_history(neu_text_mit_chunks, history)
headers, payload = process_image(file, prompt_neu, MODEL_NAME_IMAGE, OAI_API_KEY)
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
#als json ausgeben
data = response.json()
# Den "content" auswählen, da dort die Antwort der Ki enthalten ist
result = data['choices'][0]['message']['content']
return result
##################################################
#zu einem Bild und Text-Prompt eine Analyse generieren
def generate_text_zu_doc(file, prompt, k, rag_option, chatbot, history, db):
global splittet
print("text mit doc ..............................")
prompt_neu = generate_prompt_with_history(prompt, history)
if (rag_option == "An"):
print("Doc mit RAG..............................")
neu_text_mit_chunks = rag_chain2(prompt, db, k)
#für Chat LLM:
#prompt_neu = generate_prompt_with_history_openai(neu_text_mit_chunks, history)
#als reiner prompt:
prompt_neu = generate_prompt_with_history(neu_text_mit_chunks, history)
result = create_assistant_file(prompt_neu, file)
return result
####################################################
#aus einem Text-Prompt die Antwort von KI bekommen
#mit oder ohne RAG möglich
def generate_text (prompt, chatbot, history, rag_option, model_option, openai_api_key, db, k=3, top_p=0.6, temperature=0.5, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3,):
global splittet
suche_im_Netz="Antwort der KI ..."
print("Text pur..............................")
if (openai_api_key == "" or openai_api_key == "sk-"):
#raise gr.Error("OpenAI API Key is required.")
#eigenen OpenAI key nutzen
openai_api_key= OAI_API_KEY
if (rag_option is None):
raise gr.Error("Retrieval Augmented Generation ist erforderlich.")
if (prompt == ""):
raise gr.Error("Prompt ist erforderlich.")
#history für HuggingFace Models formatieren
#history_text_und_prompt = generate_prompt_with_history_hf(prompt, history)
#history für openAi formatieren
#history_text_und_prompt = generate_prompt_with_history_openai(prompt, history)
#history für Langchain formatieren
#history_text_und_prompt = generate_prompt_with_history_langchain(prompt, history)
try:
###########################
#LLM auswählen (OpenAI oder HF)
###########################
if (model_option == "OpenAI"):
#Anfrage an OpenAI ----------------------------
print("OpenAI Anfrage.......................")
llm = ChatOpenAI(model_name = MODEL_NAME, openai_api_key = openai_api_key, temperature=temperature)#, top_p = top_p)
#Prompt an history anhängen und einen Text daraus machen
if (rag_option == "An"):
history_text_und_prompt = generate_prompt_with_history(prompt, history)
else:
history_text_und_prompt = generate_prompt_with_history_openai(prompt, history)
else:
#oder an Hugging Face --------------------------
print("HF Anfrage.......................")
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature": 0.5, "max_length": 128})
#llm = HuggingFaceChain(model=MODEL_NAME_HF, model_kwargs={"temperature": 0.5, "max_length": 128})
#llm = HuggingFaceHub(url_??? = "https://wdgsjd6zf201mufn.us-east-1.aws.endpoints.huggingface.cloud", model_kwargs={"temperature": 0.5, "max_length": 64})
#llm = HuggingFaceTextGenInference( inference_server_url="http://localhost:8010/", max_new_tokens=max_new_tokens,top_k=10,top_p=top_p,typical_p=0.95,temperature=temperature,repetition_penalty=repetition_penalty,)
print("HF")
#Prompt an history anhängen und einen Text daraus machen
history_text_und_prompt = generate_prompt_with_history(prompt, history)
#zusätzliche Dokumenten Splits aus DB zum Prompt hinzufügen (aus VektorDB - Chroma oder Mongo DB)
if (rag_option == "An"):
print("LLM aufrufen mit RAG: ...........")
result = rag_chain(llm, history_text_und_prompt, db)
#elif (rag_option == "MongoDB"):
#splits = document_loading_splitting()
#document_storage_mongodb(splits)
#db = document_retrieval_mongodb(llm, history_text_und_prompt)
#result = rag_chain(llm, history_text_und_prompt, db)
else:
splittet = False
print("LLM aufrufen ohne RAG: ...........")
result = llm_chain(llm, history_text_und_prompt)
print("result llm ohne rag:...................")
print(result)
#Wenn keine Antwort möglich "Ich weiß es nicht" etc., dann versuchen mit Suche im Internet.
if (result == None or is_response_similar(result)):
print("Suche im Netz: ...........")
suche_im_Netz="Antwort aus dem Internet ..."
result = create_assistant_suche(prompt)
except Exception as e:
raise gr.Error(e)
return result, suche_im_Netz
################################################
#GUI
###############################################
#Beschreibung oben in GUI
################################################
#css = """.toast-wrap { display: none !important } """
#examples=[['Was ist ChtGPT-4?'],['schreibe ein Python Programm, dass die GPT-4 API aufruft.']]
def vote(data: gr.LikeData):
if data.liked: print("You upvoted this response: " + data.value)
else: print("You downvoted this response: " + data.value)
print ("Start GUIneu")
with open("custom.css", "r", encoding="utf-8") as f:
customCSS = f.read()
#Add Inputs für Tab 2
additional_inputs = [
gr.Slider(label="Temperature", value=0.65, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Höhere Werte erzeugen diversere Antworten", visible=True),
gr.Slider(label="Max new tokens", value=1024, minimum=0, maximum=4096, step=64, interactive=True, info="Maximale Anzahl neuer Tokens", visible=True),
gr.Slider(label="Top-p (nucleus sampling)", value=0.6, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Höhere Werte verwenden auch Tokens mit niedrigerer Wahrscheinlichkeit.", visible=True),
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Strafe für wiederholte Tokens", visible=True)
]
with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
#Session Variablen, um Weete zu speichern, auch wenn die Felder in der GUI bereits wieder leer sind
# history parallel zu chatbot speichern - da in chatbot bei Bildern zum Anzeigen in der GUI die Bilder speziell formatiert werden,
# für die Übergabe an die ki aber der Pfad zum Bild behalten werden muss - was in der history der Fall ist!
history = gr.State([])
#damit der Prompt auch nach dem upload in die History noch für predicts_args verfügbar ist
user_question = gr.State("")
#damit der Prompt auch nach dem upload in die History noch für predicts_args verfügbar ist
user_question2 = gr.State("")
attached_file = gr.State(None)
attached_file_history = gr.State(None)
status_display = gr.State("")
status_display2 = gr.State("")
################################################
# Tab zum Chatbot mit Text oder Bildeingabe
################################################
gr.Markdown(description_top)
with gr.Tab("LI Chatbot"):
with gr.Row():
#gr.HTML("LI Chatot")
status_display = gr.Markdown("Antwort der KI ...", visible = True) #, elem_id="status_display")
with gr.Row():
with gr.Column(scale=5):
with gr.Row():
chatbot = gr.Chatbot(elem_id="li-chat",show_copy_button=True)
with gr.Row():
with gr.Column(scale=12):
user_input = gr.Textbox(
show_label=False, placeholder="Gib hier deinen Prompt ein...",
container=False
)
with gr.Column(min_width=70, scale=1):
submitBtn = gr.Button("Senden")
with gr.Column(min_width=70, scale=1):
cancelBtn = gr.Button("Stop")
with gr.Row():
#file_display = gr.File(visible=False)
image_display = gr.Image( visible=False)
upload = gr.UploadButton("📁", file_types=["image", "pdf", "docx", "pptx", "xlsx"], scale = 10)
emptyBtn = gr.ClearButton([user_input, chatbot, history, attached_file, attached_file_history, image_display], value="🧹 Neue Session", scale=10)
with gr.Column():
with gr.Column(min_width=50, scale=1):
with gr.Tab(label="Chats ..."):
chat_selector = gr.CheckboxGroup(label="", choices=update_chat_options())
download_button = gr.Button("Download ausgewählte Chats")
file_download = gr.File(label="Download-Chat", visible=False)
with gr.Tab(label="Parameter Einstellung"):
#gr.Markdown("# Parameters")
rag_option = gr.Radio(["Aus", "An"], label="LI Erweiterungen (RAG)", value = "Aus")
model_option = gr.Radio(["OpenAI", "HuggingFace"], label="Modellauswahl", value = "OpenAI")
top_p = gr.Slider(
minimum=-0,
maximum=1.0,
value=0.95,
step=0.05,
interactive=True,
label="Top-p",
visible=False,
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.5,
step=0.1,
interactive=True,
label="Temperature",
visible=False
)
max_length_tokens = gr.Slider(
minimum=0,
maximum=512,
value=512,
step=8,
interactive=True,
label="Max Generation Tokens",
visible=False,
)
max_context_length_tokens = gr.Slider(
minimum=0,
maximum=4096,
value=2048,
step=128,
interactive=True,
label="Max History Tokens",
visible=False,
)
repetition_penalty=gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Strafe für wiederholte Tokens", visible=False)
anzahl_docs = gr.Slider(label="Anzahl Dokumente", value=3, minimum=1, maximum=10, step=1, interactive=True, info="wie viele Dokumententeile aus dem Vektorstore an den prompt gehängt werden", visible=False)
openai_key = gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1, visible = False)
################################################
# Tab zum Zeichnen mit Stable Diffusion
################################################
with gr.Tab("LI Zeichnen"):
with gr.Row():
#gr.HTML("LI Zeichnen mit KI")
status_display2 = gr.Markdown("Success", visible = False, elem_id="status_display")
#gr.Markdown(description2)
with gr.Row():
with gr.Column(scale=5):
with gr.Row():
chatbot_bild = gr.Chatbot(elem_id="li-zeichnen",show_copy_button=True, show_share_button=True)
with gr.Row():
with gr.Column(scale=12):
user_input2 = gr.Textbox(
show_label=False, placeholder="Gib hier deinen Prompt ein...",
container=False
)
with gr.Column(min_width=70, scale=1):
submitBtn2 = gr.Button("Senden")
#with gr.Column(min_width=70, scale=1):
#cancelBtn2 = gr.Button("Stop")
with gr.Row():
emptyBtn2 = gr.ClearButton([user_input, chatbot_bild], value="🧹 Neue Session", scale=10)
#additional_inputs_accordion = gr.Accordion(label="Weitere Eingaben...", open=False)
with gr.Column():
with gr.Column(min_width=50, scale=1):
with gr.Tab(label="Parameter Einstellung"):
#gr.Markdown("# Parameters")
model_option_zeichnen = gr.Radio(["Stable Diffusion","DallE"], label="Modellauswahl", value = "Stable Diffusion")
gr.Markdown(description)
######################################
# Events und Übergabe Werte an Funktionen
#######################################
######################################
# Für Tab 1: Chatbot
#Argumente für generate Funktion als Input
predict_args = dict(
fn=generate_auswahl,
inputs=[
user_question,
attached_file,
attached_file_history,
chatbot,
history,
rag_option,
model_option,
openai_key,
anzahl_docs,
top_p,
temperature,
max_length_tokens,
max_context_length_tokens,
repetition_penalty
],
outputs=[chatbot, history, attached_file, attached_file_history, status_display],
show_progress=True,
)
reset_args = dict(
fn=reset_textbox, inputs=[], outputs=[user_input, status_display]
)
# Chatbot
transfer_input_args = dict(
fn=add_text, inputs=[chatbot, history, user_input, attached_file, attached_file_history], outputs=[chatbot, history, user_question, attached_file, attached_file_history, image_display , user_input], show_progress=True
)
predict_event1 = user_input.submit(**transfer_input_args, queue=False,).then(**predict_args)
predict_event2 = submitBtn.click(**transfer_input_args, queue=False,).then(**predict_args)
predict_event3 = upload.upload(file_anzeigen, [upload], [image_display, image_display, attached_file] ) #.then(**predict_args)
emptyBtn.click(clear_all, [history], [attached_file, image_display, history, chat_selector, file_download])
#Bild Anzeige neben dem Button wieder entfernen oder austauschen..
image_display.select(file_loeschen, [], [attached_file, image_display])
download_button.click(fn=download_chats, inputs=chat_selector, outputs=file_download)
#Berechnung oder Ausgabe anhalten (kann danach fortgesetzt werden)
cancelBtn.click(cancel_outputing, [], [status_display], cancels=[predict_event1,predict_event2, predict_event3])
######################################
# Für Tab 2: Zeichnen
predict_args2 = dict(
fn=generate_bild,
inputs=[
user_question2,
chatbot_bild,
model_option_zeichnen,
#additional_inputs,
],
outputs=[chatbot_bild, status_display2], #[chatbot, history, status_display]
show_progress=True,
)
transfer_input_args2 = dict(
fn=add_text2, inputs=[chatbot_bild, user_input2], outputs=[chatbot_bild, user_question2, user_input2], show_progress=True
)
predict_event2_1 = user_input2.submit(**transfer_input_args2, queue=False,).then(**predict_args2)
predict_event2_2 = submitBtn2.click(**transfer_input_args2, queue=False,).then(**predict_args2)
#emptyBtn2.click(clear_all, [], [file_display, image_display])
#cancelBtn2.click(
#cancels=[predict_event2_1,predict_event2_2 ]
#)
demo.title = "LI-ChatBot"
demo.queue().launch(debug=True)