Spaces:
Paused
Paused
alessandro trinca tornidor
commited on
Commit
·
937bd43
1
Parent(s):
dfbc77d
[refactor] start reducing complexity of chat.py
Browse files- app/chat.py +23 -76
app/chat.py
CHANGED
@@ -1,70 +1,21 @@
|
|
1 |
-
import
|
2 |
import os
|
3 |
import sys
|
4 |
|
5 |
import cv2
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
-
import torch.nn.functional as F
|
9 |
from transformers import AutoTokenizer, BitsAndBytesConfig, CLIPImageProcessor
|
10 |
|
11 |
from model.LISA import LISAForCausalLM
|
12 |
from model.llava import conversation as conversation_lib
|
13 |
from model.llava.mm_utils import tokenizer_image_token
|
14 |
from model.segment_anything.utils.transforms import ResizeLongestSide
|
15 |
-
from utils
|
16 |
-
DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX)
|
17 |
-
|
18 |
-
|
19 |
-
def parse_args(args):
|
20 |
-
parser = argparse.ArgumentParser(description="LISA chat")
|
21 |
-
parser.add_argument("--version", default="xinlai/LISA-13B-llama2-v1")
|
22 |
-
parser.add_argument("--vis_save_path", default="./vis_output", type=str)
|
23 |
-
parser.add_argument(
|
24 |
-
"--precision",
|
25 |
-
default="bf16",
|
26 |
-
type=str,
|
27 |
-
choices=["fp32", "bf16", "fp16"],
|
28 |
-
help="precision for inference",
|
29 |
-
)
|
30 |
-
parser.add_argument("--image_size", default=1024, type=int, help="image size")
|
31 |
-
parser.add_argument("--model_max_length", default=512, type=int)
|
32 |
-
parser.add_argument("--lora_r", default=8, type=int)
|
33 |
-
parser.add_argument(
|
34 |
-
"--vision-tower", default="openai/clip-vit-large-patch14", type=str
|
35 |
-
)
|
36 |
-
parser.add_argument("--local-rank", default=0, type=int, help="node rank")
|
37 |
-
parser.add_argument("--load_in_8bit", action="store_true", default=False)
|
38 |
-
parser.add_argument("--load_in_4bit", action="store_true", default=False)
|
39 |
-
parser.add_argument("--use_mm_start_end", action="store_true", default=True)
|
40 |
-
parser.add_argument(
|
41 |
-
"--conv_type",
|
42 |
-
default="llava_v1",
|
43 |
-
type=str,
|
44 |
-
choices=["llava_v1", "llava_llama_2"],
|
45 |
-
)
|
46 |
-
return parser.parse_args(args)
|
47 |
-
|
48 |
-
|
49 |
-
def preprocess(
|
50 |
-
x,
|
51 |
-
pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1),
|
52 |
-
pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
|
53 |
-
img_size=1024,
|
54 |
-
) -> torch.Tensor:
|
55 |
-
"""Normalize pixel values and pad to a square input."""
|
56 |
-
# Normalize colors
|
57 |
-
x = (x - pixel_mean) / pixel_std
|
58 |
-
# Pad
|
59 |
-
h, w = x.shape[-2:]
|
60 |
-
padh = img_size - h
|
61 |
-
padw = img_size - w
|
62 |
-
x = F.pad(x, (0, padw, 0, padh))
|
63 |
-
return x
|
64 |
|
65 |
|
66 |
def main(args):
|
67 |
-
args = parse_args(args)
|
68 |
os.makedirs(args.vis_save_path, exist_ok=True)
|
69 |
|
70 |
# Create model
|
@@ -78,12 +29,7 @@ def main(args):
|
|
78 |
tokenizer.pad_token = tokenizer.unk_token
|
79 |
args.seg_token_idx = tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
|
80 |
|
81 |
-
|
82 |
-
torch_dtype = torch.float32
|
83 |
-
if args.precision == "bf16":
|
84 |
-
torch_dtype = torch.bfloat16
|
85 |
-
elif args.precision == "fp16":
|
86 |
-
torch_dtype = torch.half
|
87 |
|
88 |
kwargs = {"torch_dtype": torch_dtype}
|
89 |
if args.load_in_4bit:
|
@@ -156,12 +102,12 @@ def main(args):
|
|
156 |
conv.messages = []
|
157 |
|
158 |
prompt = input("Please input your prompt: ")
|
159 |
-
prompt = DEFAULT_IMAGE_TOKEN + "\n" + prompt
|
160 |
if args.use_mm_start_end:
|
161 |
replace_token = (
|
162 |
-
DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
|
163 |
)
|
164 |
-
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
|
165 |
|
166 |
conv.append_message(conv.roles[0], prompt)
|
167 |
conv.append_message(conv.roles[1], "")
|
@@ -183,27 +129,19 @@ def main(args):
|
|
183 |
.unsqueeze(0)
|
184 |
.cuda()
|
185 |
)
|
186 |
-
|
187 |
-
|
188 |
-
elif args.precision == "fp16":
|
189 |
-
image_clip = image_clip.half()
|
190 |
-
else:
|
191 |
-
image_clip = image_clip.float()
|
192 |
|
193 |
image = transform.apply_image(image_np)
|
194 |
resize_list = [image.shape[:2]]
|
195 |
|
196 |
image = (
|
197 |
-
preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
|
198 |
.unsqueeze(0)
|
199 |
.cuda()
|
200 |
)
|
201 |
-
|
202 |
-
|
203 |
-
elif args.precision == "fp16":
|
204 |
-
image = image.half()
|
205 |
-
else:
|
206 |
-
image = image.float()
|
207 |
|
208 |
input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
|
209 |
input_ids = input_ids.unsqueeze(0).cuda()
|
@@ -217,11 +155,11 @@ def main(args):
|
|
217 |
max_new_tokens=512,
|
218 |
tokenizer=tokenizer,
|
219 |
)
|
220 |
-
output_ids = output_ids[0][output_ids[0] != IMAGE_TOKEN_INDEX]
|
221 |
|
222 |
text_output = tokenizer.decode(output_ids, skip_special_tokens=False)
|
223 |
text_output = text_output.replace("\n", "").replace(" ", " ")
|
224 |
-
|
225 |
|
226 |
for i, pred_mask in enumerate(pred_masks):
|
227 |
if pred_mask.shape[0] == 0:
|
@@ -249,5 +187,14 @@ def main(args):
|
|
249 |
print("{} has been saved.".format(save_path))
|
250 |
|
251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
if __name__ == "__main__":
|
253 |
main(sys.argv[1:])
|
|
|
1 |
+
import logging
|
2 |
import os
|
3 |
import sys
|
4 |
|
5 |
import cv2
|
6 |
import numpy as np
|
7 |
import torch
|
|
|
8 |
from transformers import AutoTokenizer, BitsAndBytesConfig, CLIPImageProcessor
|
9 |
|
10 |
from model.LISA import LISAForCausalLM
|
11 |
from model.llava import conversation as conversation_lib
|
12 |
from model.llava.mm_utils import tokenizer_image_token
|
13 |
from model.segment_anything.utils.transforms import ResizeLongestSide
|
14 |
+
from utils import app_helpers, utils
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
|
17 |
def main(args):
|
18 |
+
args = app_helpers.parse_args(args)
|
19 |
os.makedirs(args.vis_save_path, exist_ok=True)
|
20 |
|
21 |
# Create model
|
|
|
29 |
tokenizer.pad_token = tokenizer.unk_token
|
30 |
args.seg_token_idx = tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
|
31 |
|
32 |
+
torch_dtype = change_torch_dtype_by_precision(args.precision)
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
kwargs = {"torch_dtype": torch_dtype}
|
35 |
if args.load_in_4bit:
|
|
|
102 |
conv.messages = []
|
103 |
|
104 |
prompt = input("Please input your prompt: ")
|
105 |
+
prompt = utils.DEFAULT_IMAGE_TOKEN + "\n" + prompt
|
106 |
if args.use_mm_start_end:
|
107 |
replace_token = (
|
108 |
+
utils.DEFAULT_IM_START_TOKEN + utils.DEFAULT_IMAGE_TOKEN + utils.DEFAULT_IM_END_TOKEN
|
109 |
)
|
110 |
+
prompt = prompt.replace(utils.DEFAULT_IMAGE_TOKEN, replace_token)
|
111 |
|
112 |
conv.append_message(conv.roles[0], prompt)
|
113 |
conv.append_message(conv.roles[1], "")
|
|
|
129 |
.unsqueeze(0)
|
130 |
.cuda()
|
131 |
)
|
132 |
+
logging.info(f"image_clip type: {type(image_clip)}.")
|
133 |
+
image_clip = app_helpers.set_image_precision_by_args(image_clip, args.precision)
|
|
|
|
|
|
|
|
|
134 |
|
135 |
image = transform.apply_image(image_np)
|
136 |
resize_list = [image.shape[:2]]
|
137 |
|
138 |
image = (
|
139 |
+
app_helpers.preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
|
140 |
.unsqueeze(0)
|
141 |
.cuda()
|
142 |
)
|
143 |
+
logging.info(f"image_clip type: {type(image_clip)}.")
|
144 |
+
image = app_helpers.set_image_precision_by_args(image, args.precision)
|
|
|
|
|
|
|
|
|
145 |
|
146 |
input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
|
147 |
input_ids = input_ids.unsqueeze(0).cuda()
|
|
|
155 |
max_new_tokens=512,
|
156 |
tokenizer=tokenizer,
|
157 |
)
|
158 |
+
output_ids = output_ids[0][output_ids[0] != utils.IMAGE_TOKEN_INDEX]
|
159 |
|
160 |
text_output = tokenizer.decode(output_ids, skip_special_tokens=False)
|
161 |
text_output = text_output.replace("\n", "").replace(" ", " ")
|
162 |
+
logging.info(f"text_output: {text_output}.")
|
163 |
|
164 |
for i, pred_mask in enumerate(pred_masks):
|
165 |
if pred_mask.shape[0] == 0:
|
|
|
187 |
print("{} has been saved.".format(save_path))
|
188 |
|
189 |
|
190 |
+
def change_torch_dtype_by_precision(precision):
|
191 |
+
torch_dtype = torch.float32
|
192 |
+
if precision == "bf16":
|
193 |
+
torch_dtype = torch.bfloat16
|
194 |
+
elif precision == "fp16":
|
195 |
+
torch_dtype = torch.half
|
196 |
+
return torch_dtype
|
197 |
+
|
198 |
+
|
199 |
if __name__ == "__main__":
|
200 |
main(sys.argv[1:])
|