Spaces:
Paused
Paused
| import argparse | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import torch | |
| import os | |
| from llava.conversation import conv_templates, SeparatorStyle | |
| from llava.utils import disable_torch_init | |
| from transformers import CLIPVisionModel, CLIPImageProcessor, StoppingCriteria | |
| from llava.model import * | |
| from llava.model.utils import KeywordsStoppingCriteria | |
| from PIL import Image | |
| import os | |
| import requests | |
| from PIL import Image | |
| from io import BytesIO | |
| DEFAULT_IMAGE_TOKEN = "<image>" | |
| DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" | |
| DEFAULT_IM_START_TOKEN = "<im_start>" | |
| DEFAULT_IM_END_TOKEN = "<im_end>" | |
| def load_image(image_file): | |
| if image_file.startswith('http') or image_file.startswith('https'): | |
| response = requests.get(image_file) | |
| image = Image.open(BytesIO(response.content)).convert('RGB') | |
| else: | |
| image = Image.open(image_file).convert('RGB') | |
| return image | |
| def eval_model(args): | |
| # Model | |
| disable_torch_init() | |
| model_name = os.path.expanduser(args.model_name) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| if "mpt" in model_name.lower(): | |
| model = LlavaMPTForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True, torch_dtype=torch.float16, use_cache=True).cuda() | |
| else: | |
| # model = LlavaLlamaForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True, torch_dtype=torch.float16, use_cache=True).cuda() | |
| model = LlavaLlamaForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map='auto')#.cuda() | |
| image_processor = CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=torch.float16) | |
| mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) | |
| tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
| if mm_use_im_start_end: | |
| tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | |
| vision_tower = model.get_model().vision_tower[0] | |
| if vision_tower.device.type == 'meta': | |
| vision_tower = CLIPVisionModel.from_pretrained(vision_tower.config._name_or_path, torch_dtype=torch.float16, low_cpu_mem_usage=True).cuda() | |
| model.get_model().vision_tower[0] = vision_tower | |
| else: | |
| vision_tower.to(device='cuda', dtype=torch.float16) | |
| vision_config = vision_tower.config | |
| vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0] | |
| vision_config.use_im_start_end = mm_use_im_start_end | |
| if mm_use_im_start_end: | |
| vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN]) | |
| image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2 | |
| qs = args.query | |
| if mm_use_im_start_end: | |
| qs = qs + '\n' + DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len + DEFAULT_IM_END_TOKEN | |
| else: | |
| qs = qs + '\n' + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len | |
| if "v1" in model_name.lower(): | |
| conv_mode = "llava_v1" | |
| elif "mpt" in model_name.lower(): | |
| conv_mode = "mpt_multimodal" | |
| else: | |
| conv_mode = "multimodal" | |
| if args.conv_mode is not None and conv_mode != args.conv_mode: | |
| print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode)) | |
| else: | |
| args.conv_mode = conv_mode | |
| conv = conv_templates[args.conv_mode].copy() | |
| conv.append_message(conv.roles[0], qs) | |
| conv.append_message(conv.roles[1], None) | |
| prompt = conv.get_prompt() | |
| inputs = tokenizer([prompt]) | |
| image = load_image(args.image_file) | |
| image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] | |
| input_ids = torch.as_tensor(inputs.input_ids).cuda() | |
| stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 | |
| keywords = [stop_str] | |
| stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
| with torch.inference_mode(): | |
| output_ids = model.generate(input_ids, images=image_tensor.unsqueeze(0).half().cuda(), do_sample=True, temperature=0.2, max_new_tokens=1024, stopping_criteria=[stopping_criteria]) | |
| input_token_len = input_ids.shape[1] | |
| n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() | |
| if n_diff_input_output > 0: | |
| print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') | |
| outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] | |
| outputs = outputs.strip() | |
| if outputs.endswith(stop_str): | |
| outputs = outputs[:-len(stop_str)] | |
| outputs = outputs.strip() | |
| print(outputs) | |
| import pdb; pdb.set_trace() | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--model-name", type=str, default="facebook/opt-350m") | |
| parser.add_argument("--image-file", type=str, required=True) | |
| parser.add_argument("--query", type=str, required=True) | |
| parser.add_argument("--conv-mode", type=str, default=None) | |
| args = parser.parse_args() | |
| eval_model(args) | |