alejandrocl86 commited on
Commit
b1bda51
·
verified ·
1 Parent(s): 54ba31b

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -39
app.py DELETED
@@ -1,39 +0,0 @@
1
- import gradio as gr
2
- from transformers import pipeline
3
-
4
-
5
- # Load the model locally
6
- model_name = "dslim/bert-base-NER"
7
- ner_pipeline = pipeline("ner", model=model_name, tokenizer=model_name, aggregation_strategy="simple")
8
-
9
- def merge_tokens(tokens):
10
- merged_tokens = []
11
- for token in tokens:
12
- if merged_tokens and token['entity_group'].startswith('I-') and merged_tokens[-1]['entity_group'].endswith(token['entity_group'][2:]):
13
- # If current token continues the entity of the last one, merge them
14
- last_token = merged_tokens[-1]
15
- last_token['word'] += token['word'].replace('##', '')
16
- last_token['end'] = token['end']
17
- last_token['score'] = (last_token['score'] + token['score']) / 2
18
- else:
19
- # Otherwise, add the token to the list
20
- merged_tokens.append(token)
21
-
22
- return merged_tokens
23
-
24
- def ner(input_text):
25
- # Use the pipeline to get entities
26
- output = ner_pipeline(input_text)
27
- merged_tokens = merge_tokens(output)
28
- return {"text": input_text, "entities": merged_tokens}
29
-
30
- # Gradio interface
31
- demo = gr.Interface(fn=ner,
32
- inputs=[gr.Textbox(label="Text to find entities", lines=2)],
33
- outputs=[gr.HighlightedText(label="Text with entities")],
34
- title="NER with dslim/bert-base-NER",
35
- description="Find entities using the `dslim/bert-base-NER` model under the hood!",
36
- allow_flagging="never",
37
- examples=["My name is Andrew, I'm building DeeplearningAI and I live in California", "My name is Poli, I live in Vienna and work at HuggingFace"])
38
-
39
- demo.launch()