Delete app.py
Browse files
app.py
DELETED
|
@@ -1,39 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from transformers import pipeline
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
# Load the model locally
|
| 6 |
-
model_name = "dslim/bert-base-NER"
|
| 7 |
-
ner_pipeline = pipeline("ner", model=model_name, tokenizer=model_name, aggregation_strategy="simple")
|
| 8 |
-
|
| 9 |
-
def merge_tokens(tokens):
|
| 10 |
-
merged_tokens = []
|
| 11 |
-
for token in tokens:
|
| 12 |
-
if merged_tokens and token['entity_group'].startswith('I-') and merged_tokens[-1]['entity_group'].endswith(token['entity_group'][2:]):
|
| 13 |
-
# If current token continues the entity of the last one, merge them
|
| 14 |
-
last_token = merged_tokens[-1]
|
| 15 |
-
last_token['word'] += token['word'].replace('##', '')
|
| 16 |
-
last_token['end'] = token['end']
|
| 17 |
-
last_token['score'] = (last_token['score'] + token['score']) / 2
|
| 18 |
-
else:
|
| 19 |
-
# Otherwise, add the token to the list
|
| 20 |
-
merged_tokens.append(token)
|
| 21 |
-
|
| 22 |
-
return merged_tokens
|
| 23 |
-
|
| 24 |
-
def ner(input_text):
|
| 25 |
-
# Use the pipeline to get entities
|
| 26 |
-
output = ner_pipeline(input_text)
|
| 27 |
-
merged_tokens = merge_tokens(output)
|
| 28 |
-
return {"text": input_text, "entities": merged_tokens}
|
| 29 |
-
|
| 30 |
-
# Gradio interface
|
| 31 |
-
demo = gr.Interface(fn=ner,
|
| 32 |
-
inputs=[gr.Textbox(label="Text to find entities", lines=2)],
|
| 33 |
-
outputs=[gr.HighlightedText(label="Text with entities")],
|
| 34 |
-
title="NER with dslim/bert-base-NER",
|
| 35 |
-
description="Find entities using the `dslim/bert-base-NER` model under the hood!",
|
| 36 |
-
allow_flagging="never",
|
| 37 |
-
examples=["My name is Andrew, I'm building DeeplearningAI and I live in California", "My name is Poli, I live in Vienna and work at HuggingFace"])
|
| 38 |
-
|
| 39 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|