Spaces:
Build error
Build error
Commit
·
9e73ccf
1
Parent(s):
19c8849
Add application file
Browse files
app.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import open_clip
|
| 5 |
+
|
| 6 |
+
model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k')
|
| 7 |
+
tokenizer = open_clip.get_tokenizer('ViT-B-32')
|
| 8 |
+
|
| 9 |
+
labels = ["vehicle accident", "fire", "a cat"]
|
| 10 |
+
text = tokenizer(labels)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def image_classifier(inp):
|
| 15 |
+
print(type(inp))
|
| 16 |
+
# image = preprocess(Image.open("accident.jpg")).unsqueeze(0)
|
| 17 |
+
image = preprocess(Image.fromarray(inp)).unsqueeze(0)
|
| 18 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
| 19 |
+
image_features = model.encode_image(image)
|
| 20 |
+
text_features = model.encode_text(text)
|
| 21 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
| 22 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
| 23 |
+
|
| 24 |
+
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
|
| 25 |
+
print("Label probs:", text_probs) # prints: [[1., 0., 0.]]
|
| 26 |
+
text_probs = text_probs[0]
|
| 27 |
+
print(text_probs[0])
|
| 28 |
+
|
| 29 |
+
maxProb = 0
|
| 30 |
+
ansIndex = ""
|
| 31 |
+
for idx, probs in enumerate(text_probs):
|
| 32 |
+
if probs > maxProb:
|
| 33 |
+
ansIndex = idx
|
| 34 |
+
maxProb = probs
|
| 35 |
+
|
| 36 |
+
obj = {}
|
| 37 |
+
for i in range(len(labels)):
|
| 38 |
+
currLabel = labels[i]
|
| 39 |
+
currProb = text_probs[i]
|
| 40 |
+
obj[currLabel]=currProb
|
| 41 |
+
print(obj)
|
| 42 |
+
return {labels[ansIndex] : 1}
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
image_input = gr.inputs.Image(shape=(224, 224))
|
| 46 |
+
output = gr.outputs.Label()
|
| 47 |
+
demo = gr.Interface(fn=image_classifier, inputs=image_input, outputs=output)
|
| 48 |
+
demo.launch(share=False)
|
| 49 |
+
|