import os # Setting environment variables os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0" os.environ["KERAS_BACKEND"] = "jax" import streamlit as st import cv2 import numpy as np from PIL import Image import keras import warnings warnings.filterwarnings("ignore") def resize_for_inference(input_image): # Convert uploaded image to NumPy array image = np.array(input_image) # Convert the image to RGB format (for compatibility with GrabCut) image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Initialize the mask for GrabCut mask = np.zeros(image.shape[:2], np.uint8) # Define the rectangle for the GrabCut algorithm height, width = image.shape[:2] rect = (10, 10, width - 20, height - 20) # Slightly smaller than the full image # Allocate memory for the GrabCut algorithm bgd_model = np.zeros((1, 65), np.float64) fgd_model = np.zeros((1, 65), np.float64) # Apply the GrabCut algorithm cv2.grabCut(image_rgb, mask, rect, bgd_model, fgd_model, 5, cv2.GC_INIT_WITH_RECT) # Convert the mask to binary (foreground is white, background is black) binary_mask = np.where((mask == 2) | (mask == 0), 0, 255).astype('uint8') # Resize the binary mask to the desired shape (960x720) resized_mask = cv2.resize(binary_mask, (720, 960), interpolation=cv2.INTER_AREA) # Further resize the mask to target size (224x224) target_size = (224, 224) final_resized_mask = cv2.resize(resized_mask, target_size, interpolation=cv2.INTER_AREA) final_resized_mask = np.expand_dims(final_resized_mask, axis=-1) return final_resized_mask # Streamlit UI st.title("Body Measurement Predictor") st.write("Upload an image to predict body measurements.") uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) # Check if the model is already loaded in the session state if 'loaded_model' not in st.session_state: with st.spinner("Model is getting loaded. Please wait..."): try: # Load the pre-trained model only once st.session_state.loaded_model = keras.saving.load_model("hf://datasciencesage/bodym_measurement_model") st.success("Model loaded successfully!") except Exception as e: st.error(f"Error loading model: {e}") # Show the image upload box immediately if uploaded_image is not None: # Display the uploaded image image = Image.open(uploaded_image) st.image(image, caption="Uploaded Image", use_column_width=True) # Preprocess the image and make predictions using the pre-loaded model with st.spinner("DOING IMAGE PREPROCESSING.....PLEASE WAIT..."): resized_image = resize_for_inference(image) single_image_expanded = np.expand_dims(resized_image, axis=0) # Make predictions using the loaded model with st.spinner("INFERENCE IS BEING DONE.....PLEASE WAIT..."): single_image_expanded = np.expand_dims(resized_image, axis=0) # Make predictions using the loaded model predicted_values = st.session_state.loaded_model.predict(single_image_expanded)[0] columns = ['ankle', 'arm-length', 'bicep', 'calf', 'chest', 'forearm', 'height', 'hip', 'leg-length', 'shoulder-breadth', 'shoulder-to-crotch', 'thigh', 'waist', 'wrist'] # Display the results st.write("Predicted Body Measurements:") for body_type, measurement in zip(columns, predicted_values): st.write(f"{body_type}: {measurement:.2f} cm")