import gradio as gr from fastai.vision.all import * learn = load_learner('hotdog.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = 'Hotdog or not' description = 'Jin Yang' article = "
" examples = ['hotdog and nothotdog.png'] interpretation='default' gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=2),title=title,description=description,article=article,examples=examples,interpretation=interpretation).launch()