akshay326 commited on
Commit
c38d337
1 Parent(s): f18a8d9

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +227 -0
app.py ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ import tqdm
4
+ from langchain.document_loaders import PyPDFLoader
5
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
6
+ from langchain.vectorstores import Chroma
7
+ from langchain.chains import ConversationalRetrievalChain
8
+ from langchain.embeddings import HuggingFaceEmbeddings
9
+ from langchain.llms import HuggingFacePipeline
10
+ from langchain.chains import ConversationChain
11
+ from langchain.memory import ConversationBufferMemory
12
+ from langchain.llms import HuggingFaceHub
13
+
14
+
15
+ default_persist_directory = './chroma_HF/'
16
+ MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2"
17
+
18
+ # Load PDF document and create doc splits
19
+ def load_doc(list_file_path, chunk_size, chunk_overlap):
20
+ loaders = [PyPDFLoader(x) for x in list_file_path]
21
+ pages = []
22
+ for loader in loaders:
23
+ pages.extend(loader.load())
24
+
25
+ text_splitter = RecursiveCharacterTextSplitter(
26
+ chunk_size = chunk_size,
27
+ chunk_overlap = chunk_overlap)
28
+ doc_splits = text_splitter.split_documents(pages)
29
+ return doc_splits
30
+
31
+
32
+ # Create vector database
33
+ def create_db(splits):
34
+ embedding = HuggingFaceEmbeddings()
35
+ vectordb = Chroma.from_documents(
36
+ documents=splits,
37
+ embedding=embedding,
38
+ )
39
+ return vectordb
40
+
41
+
42
+ # Load vector database
43
+ def load_db():
44
+ embedding = HuggingFaceEmbeddings()
45
+ vectordb = Chroma(
46
+ persist_directory=default_persist_directory,
47
+ embedding_function=embedding,
48
+ )
49
+ return vectordb
50
+
51
+
52
+ # Initialize langchain LLM chain
53
+ def initialize_llmchain(temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
54
+ progress(0.1, desc="Initializing HF tokenizer...")
55
+
56
+ # HuggingFaceHub uses HF inference endpoints
57
+ progress(0.5, desc="Initializing HF Hub...")
58
+ llm = HuggingFaceHub(
59
+ repo_id=MODEL_NAME,
60
+ model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k,\
61
+ "trust_remote_code": True, "torch_dtype": "auto"}
62
+ )
63
+
64
+ progress(0.75, desc="Defining buffer memory...")
65
+ memory = ConversationBufferMemory(
66
+ memory_key="chat_history",
67
+ output_key='answer',
68
+ return_messages=True
69
+ )
70
+
71
+ retriever=vector_db.as_retriever()
72
+ progress(0.8, desc="Defining retrieval chain...")
73
+ qa_chain = ConversationalRetrievalChain.from_llm(
74
+ llm,
75
+ retriever=retriever,
76
+ chain_type="stuff",
77
+ memory=memory,
78
+ return_source_documents=True,
79
+ )
80
+ progress(0.9, desc="Done!")
81
+ return qa_chain
82
+
83
+
84
+ # Initialize database
85
+ def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
86
+ # Create list of documents (when valid)
87
+ #file_path = file_obj.name
88
+ list_file_path = [x.name for x in list_file_obj if x is not None]
89
+ # print('list_file_path', list_file_path)
90
+ progress(0.25, desc="Loading document...")
91
+ # Load document and create splits
92
+ doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
93
+ # Create or load Vector database
94
+ progress(0.5, desc="Generating vector database...")
95
+ # global vector_db
96
+ vector_db = create_db(doc_splits)
97
+ progress(0.9, desc="Done!")
98
+ return vector_db, "Complete!"
99
+
100
+
101
+ def initialize_LLM(llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
102
+ qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
103
+ return qa_chain, "Complete!"
104
+
105
+
106
+ def format_chat_history(message, chat_history):
107
+ formatted_chat_history = []
108
+ for user_message, bot_message in chat_history:
109
+ formatted_chat_history.append(f"User: {user_message}")
110
+ formatted_chat_history.append(f"Assistant: {bot_message}")
111
+ return formatted_chat_history
112
+
113
+
114
+ def conversation(qa_chain, message, history):
115
+ formatted_chat_history = format_chat_history(message, history)
116
+
117
+ # Generate response using QA chain
118
+ response = qa_chain({"question": message, "chat_history": formatted_chat_history})
119
+ response_answer = response["answer"]
120
+ response_sources = response["source_documents"]
121
+ response_source1 = response_sources[0].page_content.strip()
122
+ response_source2 = response_sources[1].page_content.strip()
123
+ # Langchain sources are zero-based
124
+ response_source1_page = response_sources[0].metadata["page"] + 1
125
+ response_source2_page = response_sources[1].metadata["page"] + 1
126
+ # print ('chat response: ', response_answer)
127
+ # print('DB source', response_sources)
128
+
129
+ # Append user message and response to chat history
130
+ new_history = history + [(message, response_answer)]
131
+ # return gr.update(value=""), new_history, response_sources[0], response_sources[1]
132
+ return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page
133
+
134
+
135
+ def upload_file(file_obj):
136
+ list_file_path = []
137
+ for idx, file in enumerate(file_obj):
138
+ file_path = file_obj.name
139
+ list_file_path.append(file_path)
140
+ # print(file_path)
141
+ # initialize_database(file_path, progress)
142
+ return list_file_path
143
+
144
+
145
+ def demo():
146
+ with gr.Blocks(theme="base") as demo:
147
+ vector_db = gr.State()
148
+ qa_chain = gr.State()
149
+
150
+ gr.Markdown(
151
+ """<center><h2>Mistral 7B Document Chat</center></h2>
152
+ <h3>Ask any questions about your PDF documents, along with follow-ups</h3>
153
+ <br/>
154
+ <b>Note:</b> This AI assistant performs retrieval-augmented generation from your PDF documents. \
155
+ When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes.</i>
156
+ <br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.<br>
157
+ """)
158
+ with gr.Tab("Step 1 - Document pre-processing"):
159
+ with gr.Row():
160
+ document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
161
+ with gr.Row():
162
+ db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
163
+ with gr.Accordion("Advanced options - Document text splitter", open=False):
164
+ with gr.Row():
165
+ slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
166
+ with gr.Row():
167
+ slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
168
+ with gr.Row():
169
+ db_progress = gr.Textbox(label="Vector database initialization", value="None")
170
+ with gr.Row():
171
+ db_btn = gr.Button("Generating vector database...")
172
+
173
+ with gr.Tab("Step 2 - QA chain initialization"):
174
+ with gr.Accordion("Advanced options - LLM model", open=False):
175
+ slider_temperature = gr.Slider(minimum = 0.0, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
176
+ slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
177
+ slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
178
+ with gr.Row():
179
+ llm_progress = gr.Textbox(value="None",label="QA chain initialization")
180
+ with gr.Row():
181
+ qachain_btn = gr.Button("Initializing question-answering chain...")
182
+
183
+ with gr.Tab("Step 3 - Conversation with chatbot"):
184
+ chatbot = gr.Chatbot(height=300)
185
+ with gr.Accordion("Advanced - Document references", open=False):
186
+ with gr.Row():
187
+ doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
188
+ source1_page = gr.Number(label="Page", scale=1)
189
+ with gr.Row():
190
+ doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
191
+ source2_page = gr.Number(label="Page", scale=1)
192
+ with gr.Row():
193
+ msg = gr.Textbox(placeholder="Type message", container=True)
194
+ with gr.Row():
195
+ submit_btn = gr.Button("Submit")
196
+ clear_btn = gr.ClearButton([msg, chatbot])
197
+
198
+ # Preprocessing events
199
+ #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
200
+ db_btn.click(initialize_database, \
201
+ inputs=[document, slider_chunk_size, slider_chunk_overlap], \
202
+ outputs=[vector_db, db_progress])
203
+ qachain_btn.click(initialize_LLM, \
204
+ inputs=[slider_temperature, slider_maxtokens, slider_topk, vector_db], \
205
+ outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0], \
206
+ inputs=None, \
207
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page], \
208
+ queue=False)
209
+
210
+ # Chatbot events
211
+ msg.submit(conversation, \
212
+ inputs=[qa_chain, msg, chatbot], \
213
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page], \
214
+ queue=False)
215
+ submit_btn.click(conversation, \
216
+ inputs=[qa_chain, msg, chatbot], \
217
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page], \
218
+ queue=False)
219
+ clear_btn.click(lambda:[None,"",0,"",0], \
220
+ inputs=None, \
221
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page], \
222
+ queue=False)
223
+ demo.queue().launch(debug=True)
224
+
225
+
226
+ if __name__ == "__main__":
227
+ demo()