File size: 2,135 Bytes
5a3dfd3
e6995ca
6dcded2
5a3dfd3
 
 
 
e2aae4e
5a3dfd3
6dcded2
b483613
e6995ca
b483613
5a3dfd3
1943daa
d37873a
 
 
6dcded2
be469ef
03898c7
5ddbbe2
03898c7
 
 
 
 
 
6dcded2
03898c7
6dcded2
e6995ca
c80a17d
9ba6616
5ddbbe2
c80a17d
a01ad06
8ce9b88
a01ad06
5a3dfd3
0900976
 
5a3dfd3
a93e3be
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import os
os.system("wget https://huggingface.co/akhaliq/lama/resolve/main/best.ckpt")
os.system("pip install imageio")
import cv2
import paddlehub as hub
import gradio as gr
import torch
from PIL import Image, ImageOps
import numpy as np
import imageio
os.mkdir("data")
os.rename("best.ckpt", "models/best.ckpt")
os.mkdir("dataout")
model = hub.Module(name='U2Net')
def infer(img,option):
  print(type(img))
  print(type(img["image"]))
  print(type(img["mask"]))
  imageio.imwrite("./data/data.png", img["image"])
  if option == "automatic (U2net)":
      result = model.Segmentation(
          images=[cv2.cvtColor(img["image"], cv2.COLOR_RGB2BGR)],
          paths=None,
          batch_size=1,
          input_size=320,
          output_dir='output',
          visualization=True)
      im = Image.fromarray(result[0]['mask'])
      im.save("./data/data_mask.png")
  else:
      imageio.imwrite("./data/data_mask.png", img["mask"])
  os.system('python predict.py model.path=/home/user/app/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu')
  return "./dataout/data_mask.png","./data/data_mask.png"
  
inputs = [gr.Image(tool="sketch", label="Input",type="numpy"),gr.inputs.Radio(choices=["automatic (U2net)","manual"], type="value", default="manual", label="Masking option")]
outputs = [gr.outputs.Image(type="file",label="output"),gr.outputs.Image(type="file",label="Mask")]
title = "LaMa Image Inpainting"
description = "Gradio demo for LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Masks are generated by U^2net"
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.07161' target='_blank'>Resolution-robust Large Mask Inpainting with Fourier Convolutions</a> | <a href='https://github.com/saic-mdal/lama' target='_blank'>Github Repo</a></p>"
examples = [
  ['person512.png',"automatic (U2net)"],
  ['person512.png',"manual"]
]
gr.Interface(infer, inputs, outputs, title=title, description=description, article=article, examples=examples).launch()