Spaces:
Runtime error
Runtime error
| # -*- coding: utf-8 -*- | |
| from PIL import Image | |
| from transformers import AutoTokenizer, AutoModel, AutoImageProcessor, AutoModelForCausalLM | |
| from transformers.generation.configuration_utils import GenerationConfig | |
| from transformers.generation import LogitsProcessorList, PrefixConstrainedLogitsProcessor, UnbatchedClassifierFreeGuidanceLogitsProcessor | |
| import torch | |
| from emu3.mllm.processing_emu3 import Emu3Processor | |
| # model path | |
| EMU_HUB = "BAAI/Emu3-Gen" | |
| VQ_HUB = "BAAI/Emu3-VisionTokenizer" | |
| # prepare model and processor | |
| model = AutoModelForCausalLM.from_pretrained( | |
| EMU_HUB, | |
| device_map="cuda:0", | |
| torch_dtype=torch.bfloat16, | |
| attn_implementation="flash_attention_2", | |
| trust_remote_code=True, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(EMU_HUB, trust_remote_code=True) | |
| image_processor = AutoImageProcessor.from_pretrained(VQ_HUB, trust_remote_code=True) | |
| image_tokenizer = AutoModel.from_pretrained(VQ_HUB, device_map="cuda:0", trust_remote_code=True).eval() | |
| processor = Emu3Processor(image_processor, image_tokenizer, tokenizer) | |
| # prepare input | |
| POSITIVE_PROMPT = " masterpiece, film grained, best quality." | |
| NEGATIVE_PROMPT = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry." | |
| classifier_free_guidance = 3.0 | |
| prompt = "a portrait of young girl." | |
| prompt += POSITIVE_PROMPT | |
| kwargs = dict( | |
| mode='G', | |
| ratio="1:1", | |
| image_area=model.config.image_area, | |
| return_tensors="pt", | |
| ) | |
| pos_inputs = processor(text=prompt, **kwargs) | |
| neg_inputs = processor(text=NEGATIVE_PROMPT, **kwargs) | |
| # prepare hyper parameters | |
| GENERATION_CONFIG = GenerationConfig( | |
| use_cache=True, | |
| eos_token_id=model.config.eos_token_id, | |
| pad_token_id=model.config.pad_token_id, | |
| max_new_tokens=40960, | |
| do_sample=True, | |
| top_k=2048, | |
| ) | |
| h, w = pos_inputs.image_size[0] | |
| constrained_fn = processor.build_prefix_constrained_fn(h, w) | |
| logits_processor = LogitsProcessorList([ | |
| UnbatchedClassifierFreeGuidanceLogitsProcessor( | |
| classifier_free_guidance, | |
| model, | |
| unconditional_ids=neg_inputs.input_ids.to("cuda:0"), | |
| ), | |
| PrefixConstrainedLogitsProcessor( | |
| constrained_fn , | |
| num_beams=1, | |
| ), | |
| ]) | |
| # generate | |
| outputs = model.generate( | |
| pos_inputs.input_ids.to("cuda:0"), | |
| GENERATION_CONFIG, | |
| logits_processor=logits_processor | |
| ) | |
| mm_list = processor.decode(outputs[0]) | |
| for idx, im in enumerate(mm_list): | |
| if not isinstance(im, Image.Image): | |
| continue | |
| im.save(f"result_{idx}.png") | |