# This is the configuration file for LibriTTS dataset. # This configuration is based on StyleMelGAN paper but # uses MSE loss instead of Hinge loss. And I found that # batch_size = 8 is also working good. So maybe if you # want to accelerate the training, you can reduce the # batch size (e.g. 8 or 16). Upsampling scales is modified # to fit the shift size 300 pt. ########################################################### # FEATURE EXTRACTION SETTING # ########################################################### sampling_rate: 24000 # Sampling rate. fft_size: 2048 # FFT size. hop_size: 300 # Hop size. win_length: 1200 # Window length. # If set to null, it will be the same as fft_size. window: "hann" # Window function. num_mels: 80 # Number of mel basis. fmin: 80 # Minimum freq in mel basis calculation. fmax: 7600 # Maximum frequency in mel basis calculation. global_gain_scale: 1.0 # Will be multiplied to all of waveform. trim_silence: false # Whether to trim the start and end of silence. trim_threshold_in_db: 60 # Need to tune carefully if the recording is not good. trim_frame_size: 1024 # Frame size in trimming. trim_hop_size: 256 # Hop size in trimming. format: "hdf5" # Feature file format. " npy " or " hdf5 " is supported. ########################################################### # GENERATOR NETWORK ARCHITECTURE SETTING # ########################################################### generator_type: "StyleMelGANGenerator" # Generator type. generator_params: in_channels: 128 aux_channels: 80 channels: 64 out_channels: 1 kernel_size: 9 dilation: 2 bias: True noise_upsample_scales: [10, 2, 2, 2] noise_upsample_activation: "LeakyReLU" noise_upsample_activation_params: negative_slope: 0.2 upsample_scales: [5, 1, 5, 1, 3, 1, 2, 2, 1] upsample_mode: "nearest" gated_function: "softmax" use_weight_norm: True ########################################################### # DISCRIMINATOR NETWORK ARCHITECTURE SETTING # ########################################################### discriminator_type: "StyleMelGANDiscriminator" # Discriminator type. discriminator_params: repeats: 4 window_sizes: [512, 1024, 2048, 4096] pqmf_params: - [1, None, None, None] - [2, 62, 0.26700, 9.0] - [4, 62, 0.14200, 9.0] - [8, 62, 0.07949, 9.0] discriminator_params: out_channels: 1 kernel_sizes: [5, 3] channels: 16 max_downsample_channels: 512 bias: True downsample_scales: [4, 4, 4, 1] nonlinear_activation: "LeakyReLU" nonlinear_activation_params: negative_slope: 0.2 use_weight_norm: True ########################################################### # STFT LOSS SETTING # ########################################################### stft_loss_params: fft_sizes: [1024, 2048, 512] # List of FFT size for STFT-based loss. hop_sizes: [120, 240, 50] # List of hop size for STFT-based loss win_lengths: [600, 1200, 240] # List of window length for STFT-based loss. window: "hann_window" # Window function for STFT-based loss lambda_aux: 1.0 # Loss balancing coefficient for aux loss. ########################################################### # ADVERSARIAL LOSS SETTING # ########################################################### lambda_adv: 1.0 # Loss balancing coefficient for adv loss. generator_adv_loss_params: average_by_discriminators: false # Whether to average loss by #discriminators. discriminator_adv_loss_params: average_by_discriminators: false # Whether to average loss by #discriminators. ########################################################### # DATA LOADER SETTING # ########################################################### batch_size: 32 # Batch size. batch_max_steps: 24000 # Length of each audio in batch. Make sure dividable by hop_size. pin_memory: true # Whether to pin memory in Pytorch DataLoader. num_workers: 2 # Number of workers in Pytorch DataLoader. remove_short_samples: false # Whether to remove samples the length of which are less than batch_max_steps. allow_cache: false # Whether to allow cache in dataset. If true, it requires cpu memory. ########################################################### # OPTIMIZER & SCHEDULER SETTING # ########################################################### generator_optimizer_type: Adam generator_optimizer_params: lr: 1.0e-4 betas: [0.5, 0.9] weight_decay: 0.0 generator_scheduler_type: MultiStepLR generator_scheduler_params: gamma: 0.5 milestones: - 100000 - 300000 - 500000 - 700000 - 900000 generator_grad_norm: -1 discriminator_optimizer_type: Adam discriminator_optimizer_params: lr: 2.0e-4 betas: [0.5, 0.9] weight_decay: 0.0 discriminator_scheduler_type: MultiStepLR discriminator_scheduler_params: gamma: 0.5 milestones: - 200000 - 400000 - 600000 - 800000 discriminator_grad_norm: -1 ########################################################### # INTERVAL SETTING # ########################################################### discriminator_train_start_steps: 100000 # Number of steps to start to train discriminator. train_max_steps: 1500000 # Number of training steps. save_interval_steps: 50000 # Interval steps to save checkpoint. eval_interval_steps: 1000 # Interval steps to evaluate the network. log_interval_steps: 100 # Interval steps to record the training log. ########################################################### # OTHER SETTING # ########################################################### num_save_intermediate_results: 4 # Number of results to be saved as intermediate results.