# This is the configuration file for yesno dataset. # Note that this configuration is just for debugging. ########################################################### # FEATURE EXTRACTION SETTING # ########################################################### sampling_rate: 8000 # Sampling rate. fft_size: 1024 # FFT size. hop_size: 256 # Hop size. win_length: null # Window length. # If set to null, it will be the same as fft_size. window: "hann" # Window function. num_mels: 80 # Number of mel basis. fmin: 80 # Minimum freq in mel basis calculation. fmax: 3800 # Maximum frequency in mel basis calculation. global_gain_scale: 1.0 # Will be multiplied to all of waveform. trim_silence: true # Whether to trim the start and end of silence. trim_threshold_in_db: 20 # Need to tune carefully if the recording is not good. trim_frame_size: 1024 # Frame size in trimming. trim_hop_size: 256 # Hop size in trimming. format: "hdf5" # Feature file format. "npy" or "hdf5" is supported. ########################################################### # GENERATOR NETWORK ARCHITECTURE SETTING # ########################################################### generator_type: HiFiGANGenerator generator_params: in_channels: 80 # Number of input channels. out_channels: 1 # Number of output channels. channels: 32 # Number of initial channels. kernel_size: 7 # Kernel size of initial and final conv layers. upsample_scales: [8, 8, 2, 2] # Upsampling scales. upsample_kernel_sizes: [16, 16, 4, 4] # Kernel size for upsampling layers. resblock_kernel_sizes: [3, 7, 11] # Kernel size for residual blocks. resblock_dilations: # Dilations for residual blocks. - [1, 3, 5] - [1, 3, 5] - [1, 3, 5] use_additional_convs: true # Whether to use additional conv layer in residual blocks. bias: true # Whether to use bias parameter in conv. nonlinear_activation: "LeakyReLU" # Nonlinear activation type. nonlinear_activation_params: # Nonlinear activation paramters. negative_slope: 0.1 use_weight_norm: true # Whether to apply weight normalization. ########################################################### # DISCRIMINATOR NETWORK ARCHITECTURE SETTING # ########################################################### discriminator_type: HiFiGANMultiScaleMultiPeriodDiscriminator discriminator_params: scales: 2 # Number of multi-scale discriminator. scale_downsample_pooling: "AvgPool1d" # Pooling operation for scale discriminator. scale_downsample_pooling_params: kernel_size: 4 # Pooling kernel size. stride: 2 # Pooling stride. padding: 2 # Padding size. scale_discriminator_params: in_channels: 1 # Number of input channels. out_channels: 1 # Number of output channels. kernel_sizes: [15, 41, 5, 3] # List of kernel sizes. channels: 16 # Initial number of channels. max_downsample_channels: 32 # Maximum number of channels in downsampling conv layers. max_groups: 16 # Maximum number of groups in downsampling conv layers. bias: true downsample_scales: [4, 4, 4, 4] # Downsampling scales. nonlinear_activation: "LeakyReLU" # Nonlinear activation. nonlinear_activation_params: negative_slope: 0.1 follow_official_norm: true # Whether to follow the official norm setting. periods: [2, 3] # List of period for multi-period discriminator. period_discriminator_params: in_channels: 1 # Number of input channels. out_channels: 1 # Number of output channels. kernel_sizes: [5, 3] # List of kernel sizes. channels: 32 # Initial number of channels. downsample_scales: [4, 4, 4, 4] # Downsampling scales. max_downsample_channels: 32 # Maximum number of channels in downsampling conv layers. bias: true # Whether to use bias parameter in conv layer." nonlinear_activation: "LeakyReLU" # Nonlinear activation. nonlinear_activation_params: # Nonlinear activation paramters. negative_slope: 0.1 use_weight_norm: true # Whether to apply weight normalization. use_spectral_norm: false # Whether to apply spectral normalization. ########################################################### # STFT LOSS SETTING # ########################################################### use_stft_loss: false use_mel_loss: true generator_adv_loss_params: average_by_discriminators: false # Whether to average loss by #discriminators. discriminator_adv_loss_params: average_by_discriminators: false # Whether to average loss by #discriminators. use_feat_match_loss: true feat_match_loss_params: average_by_discriminators: false # Whether to average loss by # discriminators. average_by_layers: false # Whether to average loss by # layers in each discriminator. include_final_outputs: true # Whether to include final outputs in feat match loss calculation. ########################################################### # ADVERSARIAL LOSS SETTING # ########################################################### lambda_aux: 45.0 # Loss balancing coefficient for STFT loss. lambda_adv: 1.0 # Loss balancing coefficient for adversarial loss. lambda_feat_match: 2.0 # Loss balancing coefficient for feat match loss.. ########################################################### # DATA LOADER SETTING # ########################################################### batch_size: 2 # Batch size. batch_max_steps: 4096 # Length of each audio in batch. Make sure dividable by hop_size. pin_memory: true # Whether to pin memory in Pytorch DataLoader. num_workers: 2 # Number of workers in Pytorch DataLoader. remove_short_samples: false # Whether to remove samples the length of which are less than batch_max_steps. allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory. ########################################################### # OPTIMIZER & SCHEDULER SETTING # ########################################################### generator_optimizer_type: AdamW generator_optimizer_params: lr: 0.0002 # Generator's learning rate. betas: [0.8, 0.99] # Generator's optimizer beta weight_decay: 0.0 # Generator's weight decay coefficient. generator_scheduler_type: ExponentialLR generator_scheduler_params: gamma: 0.999 # Generator's scheduler gamma. generator_grad_norm: -1 # Generator's gradient norm. discriminator_optimizer_type: AdamW discriminator_optimizer_params: lr: 0.0002 # Discriminator's learning rate. betas: [0.8, 0.99] # Discriminator's optimizer beta weight_decay: 0.0 # Discriminator's weight decay coefficient. discriminator_scheduler_type: ExponentialLR discriminator_scheduler_params: gamma: 0.999 # Discriminator's scheduler gamma. discriminator_grad_norm: -1 # Discriminator's gradient norm. ########################################################### # INTERVAL SETTING # ########################################################### generator_train_start_steps: 5 # Number of steps to start to train discriminator. discriminator_train_start_steps: 0 # Number of steps to start to train discriminator. train_max_steps: 10 # Number of training steps. save_interval_steps: 5 # Interval steps to save checkpoint. eval_interval_steps: 5 # Interval steps to evaluate the network. log_interval_steps: 5 # Interval steps to record the training log. ########################################################### # OTHER SETTING # ########################################################### num_save_intermediate_results: 4 # Number of results to be saved as intermediate results.