#!/bin/bash # Copyright 2020 Tomoki Hayashi # MIT License (https://opensource.org/licenses/MIT) . ./cmd.sh || exit 1; . ./path.sh || exit 1; # basic settings stage=-1 # stage to start stop_stage=100 # stage to stop verbose=1 # verbosity level (lower is less info) n_gpus=1 # number of gpus in training n_jobs=128 # number of parallel jobs in feature extraction # NOTE(kan-bayashi): renamed to conf to avoid conflict in parse_options.sh conf=conf/parallel_wavegan.v1.yaml # speaker setting part="clean" # "clean" or "all" # if set to "clean", use only clean data # if set to "all", use clean + other data # directory path setting download_dir=downloads # directory to save database dumpdir=dump # directory to dump features # training related setting tag="" # tag for directory to save model resume="" # checkpoint path to resume training # (e.g. //checkpoint-10000steps.pkl) # decoding related setting checkpoint="" # checkpoint path to be used for decoding # if not provided, the latest one will be used # (e.g. //checkpoint-400000steps.pkl) # shellcheck disable=SC1091 . utils/parse_options.sh || exit 1; train_set="train_nodev_${part}" # name of training data directory dev_set="dev_${part}" # name of development data directory eval_set="eval_${part}" # name of evaluation data directory set -euo pipefail if [ "${stage}" -le -1 ] && [ "${stop_stage}" -ge -1 ]; then echo "Stage -1: Data download" local/data_download.sh "${download_dir}" fi if [ "${stage}" -le 0 ] && [ "${stop_stage}" -ge 0 ]; then echo "Stage 0: Data preparation" if [ "${part}" = "clean" ]; then train_parts="train-clean-100 train-clean-360" dev_parts="dev-clean" eval_parts="test-clean" elif [ "${part}" = "all" ]; then train_parts="train-clean-100 train-clean-360 train-other-500" dev_parts="dev-clean dev-other" eval_parts="test-clean test-other" else echo "You must select from all or clean." >&2; exit 1; fi train_data_dirs="" dev_data_dirs="" eval_data_dirs="" for train_part in ${train_parts}; do local/data_prep.sh "${download_dir}/LibriTTS" \ "${train_part}" data "${download_dir}/LibriTTSLabel" train_data_dirs+=" data/${train_part}" done for dev_part in ${dev_parts}; do local/data_prep.sh "${download_dir}/LibriTTS" \ "${dev_part}" data "${download_dir}/LibriTTSLabel" dev_data_dirs+=" data/${dev_part}" done for eval_part in ${eval_parts}; do local/data_prep.sh "${download_dir}/LibriTTS" \ "${eval_part}" data "${download_dir}/LibriTTSLabel" eval_data_dirs+=" data/${eval_part}" done # shellcheck disable=SC2086 utils/combine_data.sh "data/${train_set}" ${train_data_dirs} # shellcheck disable=SC2086 utils/combine_data.sh "data/${dev_set}" ${dev_data_dirs} # shellcheck disable=SC2086 utils/combine_data.sh "data/${eval_set}" ${eval_data_dirs} fi stats_ext=$(grep -q "hdf5" <(yq ".format" "${conf}") && echo "h5" || echo "npy") if [ "${stage}" -le 1 ] && [ "${stop_stage}" -ge 1 ]; then echo "Stage 1: Feature extraction" # extract raw features pids=() for name in "${train_set}" "${dev_set}" "${eval_set}"; do ( [ ! -e "${dumpdir}/${name}/raw" ] && mkdir -p "${dumpdir}/${name}/raw" echo "Feature extraction start. See the progress via ${dumpdir}/${name}/raw/preprocessing.*.log." utils/make_subset_data.sh "data/${name}" "${n_jobs}" "${dumpdir}/${name}/raw" ${train_cmd} JOB=1:${n_jobs} "${dumpdir}/${name}/raw/preprocessing.JOB.log" \ parallel-wavegan-preprocess \ --config "${conf}" \ --scp "${dumpdir}/${name}/raw/wav.JOB.scp" \ --segments "${dumpdir}/${name}/raw/segments.JOB" \ --dumpdir "${dumpdir}/${name}/raw/dump.JOB" \ --verbose "${verbose}" echo "Successfully finished feature extraction of ${name} set." ) & pids+=($!) done i=0; for pid in "${pids[@]}"; do wait "${pid}" || ((++i)); done [ "${i}" -gt 0 ] && echo "$0: ${i} background jobs are failed." && exit 1; echo "Successfully finished feature extraction." # calculate statistics for normalization echo "Statistics computation start. See the progress via ${dumpdir}/${train_set}/compute_statistics.log." ${train_cmd} "${dumpdir}/${train_set}/compute_statistics.log" \ parallel-wavegan-compute-statistics \ --config "${conf}" \ --rootdir "${dumpdir}/${train_set}/raw" \ --dumpdir "${dumpdir}/${train_set}" \ --verbose "${verbose}" echo "Successfully finished calculation of statistics." # normalize and dump them pids=() for name in "${train_set}" "${dev_set}" "${eval_set}"; do ( [ ! -e "${dumpdir}/${name}/norm" ] && mkdir -p "${dumpdir}/${name}/norm" echo "Nomalization start. See the progress via ${dumpdir}/${name}/norm/normalize.*.log." ${train_cmd} JOB=1:${n_jobs} "${dumpdir}/${name}/norm/normalize.JOB.log" \ parallel-wavegan-normalize \ --config "${conf}" \ --stats "${dumpdir}/${train_set}/stats.${stats_ext}" \ --rootdir "${dumpdir}/${name}/raw/dump.JOB" \ --dumpdir "${dumpdir}/${name}/norm/dump.JOB" \ --verbose "${verbose}" echo "Successfully finished normalization of ${name} set." ) & pids+=($!) done i=0; for pid in "${pids[@]}"; do wait "${pid}" || ((++i)); done [ "${i}" -gt 0 ] && echo "$0: ${i} background jobs are failed." && exit 1; echo "Successfully finished normalization." fi if [ -z "${tag}" ]; then expdir="exp/${train_set}_libritts_$(basename "${conf}" .yaml)" else expdir="exp/${train_set}_libritts_${tag}" fi if [ "${stage}" -le 2 ] && [ "${stop_stage}" -ge 2 ]; then echo "Stage 2: Network training" [ ! -e "${expdir}" ] && mkdir -p "${expdir}" cp "${dumpdir}/${train_set}/stats.${stats_ext}" "${expdir}" if [ "${n_gpus}" -gt 1 ]; then train="python -m parallel_wavegan.distributed.launch --nproc_per_node ${n_gpus} -c parallel-wavegan-train" else train="parallel-wavegan-train" fi echo "Training start. See the progress via ${expdir}/train.log." ${cuda_cmd} --gpu "${n_gpus}" "${expdir}/train.log" \ ${train} \ --config "${conf}" \ --train-dumpdir "${dumpdir}/${train_set}/norm" \ --dev-dumpdir "${dumpdir}/${dev_set}/norm" \ --outdir "${expdir}" \ --resume "${resume}" \ --verbose "${verbose}" echo "Successfully finished training." fi if [ "${stage}" -le 3 ] && [ "${stop_stage}" -ge 3 ]; then echo "Stage 3: Network decoding" # shellcheck disable=SC2012 [ -z "${checkpoint}" ] && checkpoint="$(ls -dt "${expdir}"/*.pkl | head -1 || true)" outdir="${expdir}/wav/$(basename "${checkpoint}" .pkl)" pids=() for name in "${dev_set}" "${eval_set}"; do ( [ ! -e "${outdir}/${name}" ] && mkdir -p "${outdir}/${name}" [ "${n_gpus}" -gt 1 ] && n_gpus=1 echo "Decoding start. See the progress via ${outdir}/${name}/decode.log." ${cuda_cmd} --gpu "${n_gpus}" "${outdir}/${name}/decode.log" \ parallel-wavegan-decode \ --dumpdir "${dumpdir}/${name}/norm" \ --checkpoint "${checkpoint}" \ --outdir "${outdir}/${name}" \ --verbose "${verbose}" echo "Successfully finished decoding of ${name} set." ) & pids+=($!) done i=0; for pid in "${pids[@]}"; do wait "${pid}" || ((++i)); done [ "${i}" -gt 0 ] && echo "$0: ${i} background jobs are failed." && exit 1; echo "Successfully finished decoding." fi echo "Finished."