import gradio as gr title="Swin Transformer" description="Gradio Demo for Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows | Github Repo

" io1 = gr.Interface.load("huggingface/microsoft/swin-large-patch4-window12-384-in22k") io2 = gr.Interface.load("huggingface/microsoft/swin-base-patch4-window7-224-in22k") def inference(image, model): if model == "swin-large-patch4-window12-384-in22k": outtext = io1(image) else: outtext = io2(image) return outtext examples=[['tiger.jpeg','swin-large-patch4-window12-384-in22k']] gr.Interface( inference, [gr.inputs.Image(label="Input Image",type='filepath'),gr.inputs.Dropdown(choices=["swin-large-patch4-window12-384-in22k","swin-base-patch4-window7-224-in22k"], type="value", default="swin-large-patch4-window12-384-in22k", label="model") ], gr.outputs.Label(label="Classification"), examples=examples, article=article, title=title, description=description).launch(enable_queue=True,cache_examples=True)