Spaces:
Runtime error
Runtime error
Ahsen Khaliq
commited on
Commit
•
46c8e4c
1
Parent(s):
4d6f95f
Update app.py
Browse files
app.py
CHANGED
@@ -9,25 +9,20 @@ import math
|
|
9 |
import gradio as gr
|
10 |
from torchvision import transforms
|
11 |
import torchtext
|
12 |
-
|
|
|
|
|
13 |
torch.hub.download_url_to_file('https://i.imgur.com/WEHmKef.jpg', 'gpu.jpg')
|
14 |
-
|
15 |
# Images
|
16 |
torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2021/08/04/14/16/tower-6521842_1280.jpg', 'tower.jpg')
|
17 |
torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2017/08/31/05/36/buildings-2699520_1280.jpg', 'city.jpg')
|
18 |
-
|
19 |
idx = 0
|
20 |
-
|
21 |
torchtext.utils.download_from_url("https://drive.google.com/uc?id=1NDD54BLligyr8tzo8QGI5eihZisXK1nq", root=".")
|
22 |
-
|
23 |
-
|
24 |
def to_PIL_img(img):
|
25 |
result = Image.fromarray((img.data.cpu().numpy().transpose((1, 2, 0)) * 255).astype(np.uint8))
|
26 |
return result
|
27 |
def save_img(img, output_path):
|
28 |
to_PIL_img(img).save(output_path)
|
29 |
-
|
30 |
-
|
31 |
def param2stroke(param, H, W, meta_brushes):
|
32 |
"""
|
33 |
Input a set of stroke parameters and output its corresponding foregrounds and alpha maps.
|
@@ -38,7 +33,6 @@ def param2stroke(param, H, W, meta_brushes):
|
|
38 |
W: output width.
|
39 |
meta_brushes: a tensor with shape 2 x 3 x meta_brush_height x meta_brush_width.
|
40 |
The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush.
|
41 |
-
|
42 |
Returns:
|
43 |
foregrounds: a tensor with shape n_strokes x 3 x H x W, containing color information.
|
44 |
alphas: a tensor with shape n_strokes x 3 x H x W,
|
@@ -61,7 +55,6 @@ def param2stroke(param, H, W, meta_brushes):
|
|
61 |
index[h > w] = 0
|
62 |
index[h <= w] = 1
|
63 |
brush = meta_brushes_resize[index.long()]
|
64 |
-
|
65 |
# Calculate warp matrix according to the rules defined by pytorch, in order for warping.
|
66 |
warp_00 = cos_theta / w
|
67 |
warp_01 = sin_theta * H / (W * w)
|
@@ -87,8 +80,6 @@ def param2stroke(param, H, W, meta_brushes):
|
|
87 |
foreground = morphology.dilation(foreground)
|
88 |
alphas = morphology.erosion(alphas)
|
89 |
return foreground, alphas
|
90 |
-
|
91 |
-
|
92 |
def param2img_serial(
|
93 |
param, decision, meta_brushes, cur_canvas, frame_dir, has_border=False, original_h=None, original_w=None, *, all_frames):
|
94 |
"""
|
@@ -111,7 +102,6 @@ def param2img_serial(
|
|
111 |
on the border before saving, or there would be a black border.
|
112 |
original_h: to indicate the original height for cropping when saving intermediate results.
|
113 |
original_w: to indicate the original width for cropping when saving intermediate results.
|
114 |
-
|
115 |
Returns:
|
116 |
cur_canvas: a tensor with shape batch size x 3 x H x W, denoting painting results.
|
117 |
"""
|
@@ -133,7 +123,6 @@ def param2img_serial(
|
|
133 |
odd_y_even_x_coord_y, odd_y_even_x_coord_x = torch.meshgrid([odd_idx_y, even_idx_x])
|
134 |
cur_canvas = F.pad(cur_canvas, [patch_size_x // 4, patch_size_x // 4,
|
135 |
patch_size_y // 4, patch_size_y // 4, 0, 0, 0, 0])
|
136 |
-
|
137 |
def partial_render(this_canvas, patch_coord_y, patch_coord_x, stroke_id):
|
138 |
canvas_patch = F.unfold(this_canvas, (patch_size_y, patch_size_x),
|
139 |
stride=(patch_size_y // 2, patch_size_x // 2))
|
@@ -161,17 +150,14 @@ def param2img_serial(
|
|
161 |
this_canvas = this_canvas.view(b, 3, selected_h * patch_size_y, selected_w * patch_size_x).contiguous()
|
162 |
# this_canvas: b, 3, selected_h * py, selected_w * px
|
163 |
return this_canvas
|
164 |
-
|
165 |
global idx
|
166 |
if has_border:
|
167 |
factor = 2
|
168 |
else:
|
169 |
factor = 4
|
170 |
-
|
171 |
def store_frame(img):
|
172 |
all_frames.append(to_PIL_img(img))
|
173 |
|
174 |
-
|
175 |
if even_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
|
176 |
for i in range(s):
|
177 |
canvas = partial_render(cur_canvas, even_y_even_x_coord_y, even_y_even_x_coord_x, i)
|
@@ -186,7 +172,6 @@ def param2img_serial(
|
|
186 |
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
|
187 |
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
|
188 |
store_frame(frame[0])
|
189 |
-
|
190 |
if odd_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
|
191 |
for i in range(s):
|
192 |
canvas = partial_render(cur_canvas, odd_y_odd_x_coord_y, odd_y_odd_x_coord_x, i)
|
@@ -203,7 +188,6 @@ def param2img_serial(
|
|
203 |
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
|
204 |
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
|
205 |
store_frame(frame[0])
|
206 |
-
|
207 |
if odd_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
|
208 |
for i in range(s):
|
209 |
canvas = partial_render(cur_canvas, odd_y_even_x_coord_y, odd_y_even_x_coord_x, i)
|
@@ -219,7 +203,6 @@ def param2img_serial(
|
|
219 |
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
|
220 |
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
|
221 |
store_frame(frame[0])
|
222 |
-
|
223 |
if even_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
|
224 |
for i in range(s):
|
225 |
canvas = partial_render(cur_canvas, even_y_odd_x_coord_y, even_y_odd_x_coord_x, i)
|
@@ -235,12 +218,8 @@ def param2img_serial(
|
|
235 |
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
|
236 |
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
|
237 |
store_frame(frame[0])
|
238 |
-
|
239 |
cur_canvas = cur_canvas[:, :, patch_size_y // 4:-patch_size_y // 4, patch_size_x // 4:-patch_size_x // 4]
|
240 |
-
|
241 |
return cur_canvas
|
242 |
-
|
243 |
-
|
244 |
def param2img_parallel(param, decision, meta_brushes, cur_canvas):
|
245 |
"""
|
246 |
Input stroke parameters and decisions for each patch, meta brushes, current canvas, frame directory,
|
@@ -255,7 +234,6 @@ def param2img_parallel(param, decision, meta_brushes, cur_canvas):
|
|
255 |
The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush.
|
256 |
cur_canvas: a tensor with shape batch size x 3 x H x W,
|
257 |
where H and W denote height and width of padded results of original images.
|
258 |
-
|
259 |
Returns:
|
260 |
cur_canvas: a tensor with shape batch size x 3 x H x W, denoting painting results.
|
261 |
"""
|
@@ -289,11 +267,8 @@ def param2img_parallel(param, decision, meta_brushes, cur_canvas):
|
|
289 |
alphas = alphas.view(-1, h, w, s, 3, patch_size_y, patch_size_x).contiguous()
|
290 |
# foreground, alpha: b, h, w, stroke_per_patch, 3, render_size_y, render_size_x
|
291 |
decision = decision.view(-1, h, w, s, 1, 1, 1).contiguous()
|
292 |
-
|
293 |
# decision: b, h, w, stroke_per_patch, 1, 1, 1
|
294 |
-
|
295 |
def partial_render(this_canvas, patch_coord_y, patch_coord_x):
|
296 |
-
|
297 |
canvas_patch = F.unfold(this_canvas, (patch_size_y, patch_size_x),
|
298 |
stride=(patch_size_y // 2, patch_size_x // 2))
|
299 |
# canvas_patch: b, 3 * py * px, h * w
|
@@ -317,7 +292,6 @@ def param2img_parallel(param, decision, meta_brushes, cur_canvas):
|
|
317 |
this_canvas = this_canvas.view(b, 3, h_half * patch_size_y, w_half * patch_size_x).contiguous()
|
318 |
# this_canvas: b, 3, h_half * py, w_half * px
|
319 |
return this_canvas
|
320 |
-
|
321 |
if even_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
|
322 |
canvas = partial_render(cur_canvas, even_y_even_x_coord_y, even_y_even_x_coord_x)
|
323 |
if not is_odd_y:
|
@@ -325,7 +299,6 @@ def param2img_parallel(param, decision, meta_brushes, cur_canvas):
|
|
325 |
if not is_odd_x:
|
326 |
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
|
327 |
cur_canvas = canvas
|
328 |
-
|
329 |
if odd_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
|
330 |
canvas = partial_render(cur_canvas, odd_y_odd_x_coord_y, odd_y_odd_x_coord_x)
|
331 |
canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, -canvas.shape[3]:], canvas], dim=2)
|
@@ -335,7 +308,6 @@ def param2img_parallel(param, decision, meta_brushes, cur_canvas):
|
|
335 |
if is_odd_x:
|
336 |
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
|
337 |
cur_canvas = canvas
|
338 |
-
|
339 |
if odd_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
|
340 |
canvas = partial_render(cur_canvas, odd_y_even_x_coord_y, odd_y_even_x_coord_x)
|
341 |
canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, :canvas.shape[3]], canvas], dim=2)
|
@@ -344,7 +316,6 @@ def param2img_parallel(param, decision, meta_brushes, cur_canvas):
|
|
344 |
if not is_odd_x:
|
345 |
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
|
346 |
cur_canvas = canvas
|
347 |
-
|
348 |
if even_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
|
349 |
canvas = partial_render(cur_canvas, even_y_odd_x_coord_y, even_y_odd_x_coord_x)
|
350 |
canvas = torch.cat([cur_canvas[:, :, :canvas.shape[2], :patch_size_x // 2], canvas], dim=3)
|
@@ -353,12 +324,8 @@ def param2img_parallel(param, decision, meta_brushes, cur_canvas):
|
|
353 |
if is_odd_x:
|
354 |
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
|
355 |
cur_canvas = canvas
|
356 |
-
|
357 |
cur_canvas = cur_canvas[:, :, patch_size_y // 4:-patch_size_y // 4, patch_size_x // 4:-patch_size_x // 4]
|
358 |
-
|
359 |
return cur_canvas
|
360 |
-
|
361 |
-
|
362 |
def read_img(img_path, img_type='RGB', h=None, w=None):
|
363 |
img = Image.open(img_path).convert(img_type)
|
364 |
if h is not None and w is not None:
|
@@ -369,8 +336,6 @@ def read_img(img_path, img_type='RGB', h=None, w=None):
|
|
369 |
img = img.transpose((2, 0, 1))
|
370 |
img = torch.from_numpy(img).unsqueeze(0).float() / 255.
|
371 |
return img
|
372 |
-
|
373 |
-
|
374 |
def pad(img, H, W):
|
375 |
b, c, h, w = img.shape
|
376 |
pad_h = (H - h) // 2
|
@@ -382,8 +347,6 @@ def pad(img, H, W):
|
|
382 |
img = torch.cat([torch.zeros((b, c, H, pad_w), device=img.device), img,
|
383 |
torch.zeros((b, c, H, pad_w + remainder_w), device=img.device)], dim=-1)
|
384 |
return img
|
385 |
-
|
386 |
-
|
387 |
def crop(img, h, w):
|
388 |
H, W = img.shape[-2:]
|
389 |
pad_h = (H - h) // 2
|
@@ -392,11 +355,21 @@ def crop(img, h, w):
|
|
392 |
remainder_w = (W - w) % 2
|
393 |
img = img[:, :, pad_h:H - pad_h - remainder_h, pad_w:W - pad_w - remainder_w]
|
394 |
return img
|
395 |
-
|
396 |
-
|
397 |
def main(input_path, model_path, output_dir, need_animation=False, resize_h=None, resize_w=None, serial=False):
|
398 |
if not os.path.exists(output_dir):
|
399 |
os.mkdir(output_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
input_name = os.path.basename(input_path)
|
401 |
output_path = os.path.join(output_dir, input_name)
|
402 |
frame_dir = None
|
@@ -415,12 +388,10 @@ def main(input_path, model_path, output_dir, need_animation=False, resize_h=None
|
|
415 |
net_g.eval()
|
416 |
for param in net_g.parameters():
|
417 |
param.requires_grad = False
|
418 |
-
|
419 |
brush_large_vertical = read_img('brush/brush_large_vertical.png', 'L').to(device)
|
420 |
brush_large_horizontal = read_img('brush/brush_large_horizontal.png', 'L').to(device)
|
421 |
meta_brushes = torch.cat(
|
422 |
[brush_large_vertical, brush_large_horizontal], dim=0)
|
423 |
-
|
424 |
with torch.no_grad():
|
425 |
original_img = read_img(input_path, 'RGB', resize_h, resize_w).to(device)
|
426 |
original_h, original_w = original_img.shape[-2:]
|
@@ -438,14 +409,12 @@ def main(input_path, model_path, output_dir, need_animation=False, resize_h=None
|
|
438 |
stride=(patch_size, patch_size))
|
439 |
# There are patch_num * patch_num patches in total
|
440 |
patch_num = (layer_size - patch_size) // patch_size + 1
|
441 |
-
|
442 |
# img_patch, result_patch: b, 3 * output_size * output_size, h * w
|
443 |
img_patch = img_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous()
|
444 |
result_patch = result_patch.permute(0, 2, 1).contiguous().view(
|
445 |
-1, 3, patch_size, patch_size).contiguous()
|
446 |
shape_param, stroke_decision = net_g(img_patch, result_patch)
|
447 |
stroke_decision = network.SignWithSigmoidGrad.apply(stroke_decision)
|
448 |
-
|
449 |
grid = shape_param[:, :, :2].view(img_patch.shape[0] * stroke_num, 1, 1, 2).contiguous()
|
450 |
img_temp = img_patch.unsqueeze(1).contiguous().repeat(1, stroke_num, 1, 1, 1).view(
|
451 |
img_patch.shape[0] * stroke_num, 3, patch_size, patch_size).contiguous()
|
@@ -465,7 +434,6 @@ def main(input_path, model_path, output_dir, need_animation=False, resize_h=None
|
|
465 |
frame_dir, False, original_h, original_w, all_frames = all_frames)
|
466 |
else:
|
467 |
final_result = param2img_parallel(param, decision, meta_brushes, final_result)
|
468 |
-
|
469 |
border_size = original_img_pad_size // (2 * patch_num)
|
470 |
img = F.interpolate(original_img_pad, (patch_size * (2 ** layer), patch_size * (2 ** layer)))
|
471 |
result = F.interpolate(final_result, (patch_size * (2 ** layer), patch_size * (2 ** layer)))
|
@@ -482,7 +450,6 @@ def main(input_path, model_path, output_dir, need_animation=False, resize_h=None
|
|
482 |
img_patch = img_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous()
|
483 |
result_patch = result_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous()
|
484 |
shape_param, stroke_decision = net_g(img_patch, result_patch)
|
485 |
-
|
486 |
grid = shape_param[:, :, :2].view(img_patch.shape[0] * stroke_num, 1, 1, 2).contiguous()
|
487 |
img_temp = img_patch.unsqueeze(1).contiguous().repeat(1, stroke_num, 1, 1, 1).view(
|
488 |
img_patch.shape[0] * stroke_num, 3, patch_size, patch_size).contiguous()
|
@@ -503,17 +470,13 @@ def main(input_path, model_path, output_dir, need_animation=False, resize_h=None
|
|
503 |
else:
|
504 |
final_result = param2img_parallel(param, decision, meta_brushes, final_result)
|
505 |
final_result = final_result[:, :, border_size:-border_size, border_size:-border_size]
|
506 |
-
|
507 |
final_result = crop(final_result, original_h, original_w)
|
508 |
save_img(final_result[0], output_path)
|
509 |
tensor_to_pil = transforms.ToPILImage()(final_result[0].squeeze_(0))
|
510 |
#return tensor_to_pil
|
511 |
-
|
512 |
all_frames[0].save(os.path.join(frame_dir, 'animation.gif'),
|
513 |
save_all=True, append_images=all_frames[1:], optimize=False, duration=40, loop=0)
|
514 |
return os.path.join(frame_dir, "animation.gif"), tensor_to_pil
|
515 |
-
|
516 |
-
|
517 |
|
518 |
def gradio_inference(image):
|
519 |
return main(input_path=image.name,
|
@@ -523,7 +486,6 @@ def gradio_inference(image):
|
|
523 |
resize_h=400, # resize original input to this size. None means do not resize.
|
524 |
resize_w=400, # resize original input to this size. None means do not resize.
|
525 |
serial=True) # if need animation, serial must be True.
|
526 |
-
|
527 |
inferences_running = 0
|
528 |
def throttled_inference(image):
|
529 |
global inferences_running
|
@@ -538,11 +500,9 @@ def throttled_inference(image):
|
|
538 |
finally:
|
539 |
print("Inference finished")
|
540 |
inferences_running -= 1
|
541 |
-
|
542 |
title = "Paint Transformer"
|
543 |
description = "Gradio demo for Paint Transformer: Feed Forward Neural Painting with Stroke Prediction. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
|
544 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.03798'>Paint Transformer: Feed Forward Neural Painting with Stroke Prediction</a> | <a href='https://github.com/Huage001/PaintTransformer'>Github Repo</a></p>"
|
545 |
-
|
546 |
gr.Interface(
|
547 |
throttled_inference,
|
548 |
gr.inputs.Image(type="file", label="Input"),
|
@@ -555,4 +515,4 @@ gr.Interface(
|
|
555 |
['city.jpg'],
|
556 |
['tower.jpg']
|
557 |
]
|
558 |
-
).launch(debug=True)
|
|
|
9 |
import gradio as gr
|
10 |
from torchvision import transforms
|
11 |
import torchtext
|
12 |
+
from stat import ST_CTIME
|
13 |
+
from datetime import datetime, timedelta
|
14 |
+
import shutil
|
15 |
torch.hub.download_url_to_file('https://i.imgur.com/WEHmKef.jpg', 'gpu.jpg')
|
|
|
16 |
# Images
|
17 |
torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2021/08/04/14/16/tower-6521842_1280.jpg', 'tower.jpg')
|
18 |
torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2017/08/31/05/36/buildings-2699520_1280.jpg', 'city.jpg')
|
|
|
19 |
idx = 0
|
|
|
20 |
torchtext.utils.download_from_url("https://drive.google.com/uc?id=1NDD54BLligyr8tzo8QGI5eihZisXK1nq", root=".")
|
|
|
|
|
21 |
def to_PIL_img(img):
|
22 |
result = Image.fromarray((img.data.cpu().numpy().transpose((1, 2, 0)) * 255).astype(np.uint8))
|
23 |
return result
|
24 |
def save_img(img, output_path):
|
25 |
to_PIL_img(img).save(output_path)
|
|
|
|
|
26 |
def param2stroke(param, H, W, meta_brushes):
|
27 |
"""
|
28 |
Input a set of stroke parameters and output its corresponding foregrounds and alpha maps.
|
|
|
33 |
W: output width.
|
34 |
meta_brushes: a tensor with shape 2 x 3 x meta_brush_height x meta_brush_width.
|
35 |
The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush.
|
|
|
36 |
Returns:
|
37 |
foregrounds: a tensor with shape n_strokes x 3 x H x W, containing color information.
|
38 |
alphas: a tensor with shape n_strokes x 3 x H x W,
|
|
|
55 |
index[h > w] = 0
|
56 |
index[h <= w] = 1
|
57 |
brush = meta_brushes_resize[index.long()]
|
|
|
58 |
# Calculate warp matrix according to the rules defined by pytorch, in order for warping.
|
59 |
warp_00 = cos_theta / w
|
60 |
warp_01 = sin_theta * H / (W * w)
|
|
|
80 |
foreground = morphology.dilation(foreground)
|
81 |
alphas = morphology.erosion(alphas)
|
82 |
return foreground, alphas
|
|
|
|
|
83 |
def param2img_serial(
|
84 |
param, decision, meta_brushes, cur_canvas, frame_dir, has_border=False, original_h=None, original_w=None, *, all_frames):
|
85 |
"""
|
|
|
102 |
on the border before saving, or there would be a black border.
|
103 |
original_h: to indicate the original height for cropping when saving intermediate results.
|
104 |
original_w: to indicate the original width for cropping when saving intermediate results.
|
|
|
105 |
Returns:
|
106 |
cur_canvas: a tensor with shape batch size x 3 x H x W, denoting painting results.
|
107 |
"""
|
|
|
123 |
odd_y_even_x_coord_y, odd_y_even_x_coord_x = torch.meshgrid([odd_idx_y, even_idx_x])
|
124 |
cur_canvas = F.pad(cur_canvas, [patch_size_x // 4, patch_size_x // 4,
|
125 |
patch_size_y // 4, patch_size_y // 4, 0, 0, 0, 0])
|
|
|
126 |
def partial_render(this_canvas, patch_coord_y, patch_coord_x, stroke_id):
|
127 |
canvas_patch = F.unfold(this_canvas, (patch_size_y, patch_size_x),
|
128 |
stride=(patch_size_y // 2, patch_size_x // 2))
|
|
|
150 |
this_canvas = this_canvas.view(b, 3, selected_h * patch_size_y, selected_w * patch_size_x).contiguous()
|
151 |
# this_canvas: b, 3, selected_h * py, selected_w * px
|
152 |
return this_canvas
|
|
|
153 |
global idx
|
154 |
if has_border:
|
155 |
factor = 2
|
156 |
else:
|
157 |
factor = 4
|
|
|
158 |
def store_frame(img):
|
159 |
all_frames.append(to_PIL_img(img))
|
160 |
|
|
|
161 |
if even_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
|
162 |
for i in range(s):
|
163 |
canvas = partial_render(cur_canvas, even_y_even_x_coord_y, even_y_even_x_coord_x, i)
|
|
|
172 |
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
|
173 |
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
|
174 |
store_frame(frame[0])
|
|
|
175 |
if odd_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
|
176 |
for i in range(s):
|
177 |
canvas = partial_render(cur_canvas, odd_y_odd_x_coord_y, odd_y_odd_x_coord_x, i)
|
|
|
188 |
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
|
189 |
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
|
190 |
store_frame(frame[0])
|
|
|
191 |
if odd_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
|
192 |
for i in range(s):
|
193 |
canvas = partial_render(cur_canvas, odd_y_even_x_coord_y, odd_y_even_x_coord_x, i)
|
|
|
203 |
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
|
204 |
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
|
205 |
store_frame(frame[0])
|
|
|
206 |
if even_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
|
207 |
for i in range(s):
|
208 |
canvas = partial_render(cur_canvas, even_y_odd_x_coord_y, even_y_odd_x_coord_x, i)
|
|
|
218 |
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
|
219 |
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
|
220 |
store_frame(frame[0])
|
|
|
221 |
cur_canvas = cur_canvas[:, :, patch_size_y // 4:-patch_size_y // 4, patch_size_x // 4:-patch_size_x // 4]
|
|
|
222 |
return cur_canvas
|
|
|
|
|
223 |
def param2img_parallel(param, decision, meta_brushes, cur_canvas):
|
224 |
"""
|
225 |
Input stroke parameters and decisions for each patch, meta brushes, current canvas, frame directory,
|
|
|
234 |
The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush.
|
235 |
cur_canvas: a tensor with shape batch size x 3 x H x W,
|
236 |
where H and W denote height and width of padded results of original images.
|
|
|
237 |
Returns:
|
238 |
cur_canvas: a tensor with shape batch size x 3 x H x W, denoting painting results.
|
239 |
"""
|
|
|
267 |
alphas = alphas.view(-1, h, w, s, 3, patch_size_y, patch_size_x).contiguous()
|
268 |
# foreground, alpha: b, h, w, stroke_per_patch, 3, render_size_y, render_size_x
|
269 |
decision = decision.view(-1, h, w, s, 1, 1, 1).contiguous()
|
|
|
270 |
# decision: b, h, w, stroke_per_patch, 1, 1, 1
|
|
|
271 |
def partial_render(this_canvas, patch_coord_y, patch_coord_x):
|
|
|
272 |
canvas_patch = F.unfold(this_canvas, (patch_size_y, patch_size_x),
|
273 |
stride=(patch_size_y // 2, patch_size_x // 2))
|
274 |
# canvas_patch: b, 3 * py * px, h * w
|
|
|
292 |
this_canvas = this_canvas.view(b, 3, h_half * patch_size_y, w_half * patch_size_x).contiguous()
|
293 |
# this_canvas: b, 3, h_half * py, w_half * px
|
294 |
return this_canvas
|
|
|
295 |
if even_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
|
296 |
canvas = partial_render(cur_canvas, even_y_even_x_coord_y, even_y_even_x_coord_x)
|
297 |
if not is_odd_y:
|
|
|
299 |
if not is_odd_x:
|
300 |
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
|
301 |
cur_canvas = canvas
|
|
|
302 |
if odd_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
|
303 |
canvas = partial_render(cur_canvas, odd_y_odd_x_coord_y, odd_y_odd_x_coord_x)
|
304 |
canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, -canvas.shape[3]:], canvas], dim=2)
|
|
|
308 |
if is_odd_x:
|
309 |
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
|
310 |
cur_canvas = canvas
|
|
|
311 |
if odd_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
|
312 |
canvas = partial_render(cur_canvas, odd_y_even_x_coord_y, odd_y_even_x_coord_x)
|
313 |
canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, :canvas.shape[3]], canvas], dim=2)
|
|
|
316 |
if not is_odd_x:
|
317 |
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
|
318 |
cur_canvas = canvas
|
|
|
319 |
if even_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
|
320 |
canvas = partial_render(cur_canvas, even_y_odd_x_coord_y, even_y_odd_x_coord_x)
|
321 |
canvas = torch.cat([cur_canvas[:, :, :canvas.shape[2], :patch_size_x // 2], canvas], dim=3)
|
|
|
324 |
if is_odd_x:
|
325 |
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
|
326 |
cur_canvas = canvas
|
|
|
327 |
cur_canvas = cur_canvas[:, :, patch_size_y // 4:-patch_size_y // 4, patch_size_x // 4:-patch_size_x // 4]
|
|
|
328 |
return cur_canvas
|
|
|
|
|
329 |
def read_img(img_path, img_type='RGB', h=None, w=None):
|
330 |
img = Image.open(img_path).convert(img_type)
|
331 |
if h is not None and w is not None:
|
|
|
336 |
img = img.transpose((2, 0, 1))
|
337 |
img = torch.from_numpy(img).unsqueeze(0).float() / 255.
|
338 |
return img
|
|
|
|
|
339 |
def pad(img, H, W):
|
340 |
b, c, h, w = img.shape
|
341 |
pad_h = (H - h) // 2
|
|
|
347 |
img = torch.cat([torch.zeros((b, c, H, pad_w), device=img.device), img,
|
348 |
torch.zeros((b, c, H, pad_w + remainder_w), device=img.device)], dim=-1)
|
349 |
return img
|
|
|
|
|
350 |
def crop(img, h, w):
|
351 |
H, W = img.shape[-2:]
|
352 |
pad_h = (H - h) // 2
|
|
|
355 |
remainder_w = (W - w) % 2
|
356 |
img = img[:, :, pad_h:H - pad_h - remainder_h, pad_w:W - pad_w - remainder_w]
|
357 |
return img
|
|
|
|
|
358 |
def main(input_path, model_path, output_dir, need_animation=False, resize_h=None, resize_w=None, serial=False):
|
359 |
if not os.path.exists(output_dir):
|
360 |
os.mkdir(output_dir)
|
361 |
+
|
362 |
+
for entry in os.listdir(output_dir):
|
363 |
+
path = os.path.join(output_dir, entry)
|
364 |
+
stats = os.stat(path)
|
365 |
+
created_time = datetime.fromtimestamp(stats[ST_CTIME])
|
366 |
+
if created_time < datetime.now() - timedelta(minutes = 10):
|
367 |
+
if os.path.isdir(path):
|
368 |
+
shutil.rmtree(path)
|
369 |
+
else:
|
370 |
+
os.remove(path)
|
371 |
+
|
372 |
+
|
373 |
input_name = os.path.basename(input_path)
|
374 |
output_path = os.path.join(output_dir, input_name)
|
375 |
frame_dir = None
|
|
|
388 |
net_g.eval()
|
389 |
for param in net_g.parameters():
|
390 |
param.requires_grad = False
|
|
|
391 |
brush_large_vertical = read_img('brush/brush_large_vertical.png', 'L').to(device)
|
392 |
brush_large_horizontal = read_img('brush/brush_large_horizontal.png', 'L').to(device)
|
393 |
meta_brushes = torch.cat(
|
394 |
[brush_large_vertical, brush_large_horizontal], dim=0)
|
|
|
395 |
with torch.no_grad():
|
396 |
original_img = read_img(input_path, 'RGB', resize_h, resize_w).to(device)
|
397 |
original_h, original_w = original_img.shape[-2:]
|
|
|
409 |
stride=(patch_size, patch_size))
|
410 |
# There are patch_num * patch_num patches in total
|
411 |
patch_num = (layer_size - patch_size) // patch_size + 1
|
|
|
412 |
# img_patch, result_patch: b, 3 * output_size * output_size, h * w
|
413 |
img_patch = img_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous()
|
414 |
result_patch = result_patch.permute(0, 2, 1).contiguous().view(
|
415 |
-1, 3, patch_size, patch_size).contiguous()
|
416 |
shape_param, stroke_decision = net_g(img_patch, result_patch)
|
417 |
stroke_decision = network.SignWithSigmoidGrad.apply(stroke_decision)
|
|
|
418 |
grid = shape_param[:, :, :2].view(img_patch.shape[0] * stroke_num, 1, 1, 2).contiguous()
|
419 |
img_temp = img_patch.unsqueeze(1).contiguous().repeat(1, stroke_num, 1, 1, 1).view(
|
420 |
img_patch.shape[0] * stroke_num, 3, patch_size, patch_size).contiguous()
|
|
|
434 |
frame_dir, False, original_h, original_w, all_frames = all_frames)
|
435 |
else:
|
436 |
final_result = param2img_parallel(param, decision, meta_brushes, final_result)
|
|
|
437 |
border_size = original_img_pad_size // (2 * patch_num)
|
438 |
img = F.interpolate(original_img_pad, (patch_size * (2 ** layer), patch_size * (2 ** layer)))
|
439 |
result = F.interpolate(final_result, (patch_size * (2 ** layer), patch_size * (2 ** layer)))
|
|
|
450 |
img_patch = img_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous()
|
451 |
result_patch = result_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous()
|
452 |
shape_param, stroke_decision = net_g(img_patch, result_patch)
|
|
|
453 |
grid = shape_param[:, :, :2].view(img_patch.shape[0] * stroke_num, 1, 1, 2).contiguous()
|
454 |
img_temp = img_patch.unsqueeze(1).contiguous().repeat(1, stroke_num, 1, 1, 1).view(
|
455 |
img_patch.shape[0] * stroke_num, 3, patch_size, patch_size).contiguous()
|
|
|
470 |
else:
|
471 |
final_result = param2img_parallel(param, decision, meta_brushes, final_result)
|
472 |
final_result = final_result[:, :, border_size:-border_size, border_size:-border_size]
|
|
|
473 |
final_result = crop(final_result, original_h, original_w)
|
474 |
save_img(final_result[0], output_path)
|
475 |
tensor_to_pil = transforms.ToPILImage()(final_result[0].squeeze_(0))
|
476 |
#return tensor_to_pil
|
|
|
477 |
all_frames[0].save(os.path.join(frame_dir, 'animation.gif'),
|
478 |
save_all=True, append_images=all_frames[1:], optimize=False, duration=40, loop=0)
|
479 |
return os.path.join(frame_dir, "animation.gif"), tensor_to_pil
|
|
|
|
|
480 |
|
481 |
def gradio_inference(image):
|
482 |
return main(input_path=image.name,
|
|
|
486 |
resize_h=400, # resize original input to this size. None means do not resize.
|
487 |
resize_w=400, # resize original input to this size. None means do not resize.
|
488 |
serial=True) # if need animation, serial must be True.
|
|
|
489 |
inferences_running = 0
|
490 |
def throttled_inference(image):
|
491 |
global inferences_running
|
|
|
500 |
finally:
|
501 |
print("Inference finished")
|
502 |
inferences_running -= 1
|
|
|
503 |
title = "Paint Transformer"
|
504 |
description = "Gradio demo for Paint Transformer: Feed Forward Neural Painting with Stroke Prediction. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
|
505 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.03798'>Paint Transformer: Feed Forward Neural Painting with Stroke Prediction</a> | <a href='https://github.com/Huage001/PaintTransformer'>Github Repo</a></p>"
|
|
|
506 |
gr.Interface(
|
507 |
throttled_inference,
|
508 |
gr.inputs.Image(type="file", label="Input"),
|
|
|
515 |
['city.jpg'],
|
516 |
['tower.jpg']
|
517 |
]
|
518 |
+
).launch(debug=True)
|