import faiss import numpy as np def generate_faiss_index(embeddings): # Ensure that the embeddings are converted to np.float32 (FAISS expects float32) embeddings = np.array(embeddings, dtype=np.float32) index = faiss.IndexFlatL2(768) # Assuming 768-dimensional embeddings for a model like MiniLM index.add(embeddings) return index def load_faiss_index_to_gpu(index): # If you're using GPU, ensure the index is moved to the GPU res = faiss.StandardGpuResources() # Create resources for the GPU gpu_index = faiss.index_cpu_to_gpu(res, 0, index) # Load into GPU (assuming GPU 0 is available) return gpu_index def query_faiss_index(query_embedding, gpu_index): # Query the FAISS index with the query embedding query_embedding = np.array(query_embedding, dtype=np.float32) # Ensure the query is a np.array with the right type distances, indices = gpu_index.search(query_embedding.reshape(1, -1), 1) # Reshaping as FAISS expects 2D array return indices, distances