import os import streamlit as st import google.generativeai as genai # from langchain_openai import OpenAI / from langchain_openai import OpenAIEmbeddings from langchain_google_genai import GoogleGenerativeAIEmbeddings from langchain_google_genai import ChatGoogleGenerativeAI # from langchain_openai import OpenAIEmbeddings from langchain_community.document_loaders import Docx2txtLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_core.messages import HumanMessage, SystemMessage from langchain.chains import create_history_aware_retriever, create_retrieval_chain from langchain.chains.combine_documents import create_stuff_documents_chain from dotenv import load_dotenv from langchain.embeddings import HuggingFaceEmbeddings import pysqlite3 import sys sys.modules['sqlite3'] = pysqlite3 import os os.environ["TRANSFORMERS_OFFLINE"] = "1" # Retrieve OpenAI API key from the .env file GOOGLE_API_KEY = "AIzaSyC1-QUzA45IlCosX__sKlzNAgVZGEaHc0c" # GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") # OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") if not GOOGLE_API_KEY: raise ValueError("Gemini API key not found. Please set it in the .env file.") # Set OpenAI API key os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY # os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY # Streamlit app configuration st.set_page_config(page_title="College Data Chatbot", layout="centered") st.title("PreCollege Chatbot GEMINI+ HuggingFace Embeddings") # Initialize OpenAI LLM llm = ChatGoogleGenerativeAI( model="gemini-1.5-pro-latest", temperature=0.2, # Slightly higher for varied responses max_tokens=None, timeout=None, max_retries=2, ) # Initialize embeddings using OpenAI embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2') def load_preprocessed_vectorstore(): try: loader = Docx2txtLoader("./Updated_structred_aman.docx") documents = loader.load() text_splitter = RecursiveCharacterTextSplitter( separators=["\n\n", "\n", ". ", " ", ""], chunk_size=3000, chunk_overlap=1000) document_chunks = text_splitter.split_documents(documents) vector_store = Chroma.from_documents( embedding=embeddings, documents=document_chunks, persist_directory="./data32" ) return vector_store except Exception as e: st.error(f"Error creating vector store: {e}") return None def get_context_retriever_chain(vector_store): """Creates a history-aware retriever chain.""" retriever = vector_store.as_retriever() # Define the prompt for the retriever chain prompt = ChatPromptTemplate.from_messages([ MessagesPlaceholder(variable_name="chat_history"), ("human", "{input}"), ("system", """Given the chat history and the latest user question, which might reference context in the chat history, formulate a standalone question that can be understood without the chat history. If the question is directly addressed within the provided document, provide a relevant answer. If the question is not explicitly addressed in the document, return the following message: 'This question is beyond the scope of the available information. Please contact your mentor for further assistance.' Do NOT answer the question directly, just reformulate it if needed and otherwise return it as is.""") ]) retriever_chain = create_history_aware_retriever(llm, retriever, prompt) return retriever_chain def get_conversational_chain(retriever_chain): """Creates a conversational chain using the retriever chain.""" prompt = ChatPromptTemplate.from_messages([ ("system", """Hello! I'm your PreCollege AI assistant, here to help you with your JEE Mains journey. Please provide your JEE Mains rank and preferred engineering branches or colleges, and I'll give you tailored advice based on our verified database. Note: I will only provide information that is available within our database to ensure accuracy. Let's get started! """ "\n\n" "{context}"), MessagesPlaceholder(variable_name="chat_history"), ("human", "{input}") ]) stuff_documents_chain = create_stuff_documents_chain(llm, prompt) return create_retrieval_chain(retriever_chain, stuff_documents_chain) def get_response(user_query): retriever_chain = get_context_retriever_chain(st.session_state.vector_store) conversation_rag_chain = get_conversational_chain(retriever_chain) formatted_chat_history = [] for message in st.session_state.chat_history: if isinstance(message, HumanMessage): formatted_chat_history.append({"author": "user", "content": message.content}) elif isinstance(message, SystemMessage): formatted_chat_history.append({"author": "assistant", "content": message.content}) response = conversation_rag_chain.invoke({ "chat_history": formatted_chat_history, "input": user_query }) return response['answer'] # Load the preprocessed vector store from the local directory st.session_state.vector_store = load_preprocessed_vectorstore() # Initialize chat history if not present if "chat_history" not in st.session_state: st.session_state.chat_history = [ {"author": "assistant", "content": "Hello, I am Precollege. How can I help you?"} ] # Main app logic if st.session_state.get("vector_store") is None: st.error("Failed to load preprocessed data. Please ensure the data exists in './data' directory.") else: # Display chat history with st.container(): for message in st.session_state.chat_history: if message["author"] == "assistant": with st.chat_message("system"): st.write(message["content"]) elif message["author"] == "user": with st.chat_message("human"): st.write(message["content"]) # Add user input box below the chat with st.container(): with st.form(key="chat_form", clear_on_submit=True): user_query = st.text_input("Type your message here...", key="user_input") submit_button = st.form_submit_button("Send") if submit_button and user_query: # Get bot response response = get_response(user_query) st.session_state.chat_history.append({"author": "user", "content": user_query}) st.session_state.chat_history.append({"author": "assistant", "content": response}) # Rerun the app to refresh the chat display st.rerun() """"""