Spaces:
Sleeping
Sleeping
| from sklearn.model_selection import train_test_split | |
| import pandas as pd | |
| import tensorflow as tf | |
| from tensorflow.keras.preprocessing import sequence | |
| from Perceptron import Perceptron | |
| import pickle | |
| from sklearn.metrics import accuracy_score | |
| from sklearn.metrics import classification_report | |
| dataset = pd.read_csv(r"C:\Users\Ajitha V\OneDrive\Desktop\Neural_network\IMDB Dataset.csv") | |
| dataset['sentiment'] = dataset['sentiment'].map( {'negative': 1, 'positive': 0} ) | |
| X = dataset['review'].values | |
| y = dataset['sentiment'].values | |
| X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
| tokeniser = tf.keras.preprocessing.text.Tokenizer() | |
| tokeniser.fit_on_texts(X_train) | |
| X_train = tokeniser.texts_to_sequences(X_train) | |
| X_test = tokeniser.texts_to_sequences(X_test) | |
| max_review_length = 500 | |
| X_train = sequence.pad_sequences(X_train, maxlen=max_review_length) | |
| X_test = sequence.pad_sequences(X_test, maxlen=max_review_length) | |
| perceptron = Perceptron(epochs=10,activation_function='sigmoid') | |
| perceptron.fit(X_train, y_train) | |
| pred = perceptron.predict(X_test) | |
| print(f"Accuracy : {accuracy_score(pred, y_test)}") | |
| report = classification_report(pred, y_test, digits=2) | |
| print(report) | |
| with open("ppn_model.pkl",'wb') as file: | |
| pickle.dump(perceptron, file) | |
| with open("ppn_tokeniser.pkl",'wb') as file: | |
| pickle.dump(tokeniser, file) | |