Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use a pipeline as a high-level helper
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
from scipy.io import wavfile
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import gradio as gr
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
+
image_pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large",device=device)
|
| 11 |
+
narator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs",device=device)
|
| 12 |
+
|
| 13 |
+
def generate_audio(text):
|
| 14 |
+
# generate the audio from the text
|
| 15 |
+
audio_text = narator(text)
|
| 16 |
+
# save the audio to a WAV file
|
| 17 |
+
wavfile.write(filename="audio.wav",
|
| 18 |
+
rate=audio_text['sampling_rate'],
|
| 19 |
+
data=audio_text['audio'][0])
|
| 20 |
+
return "audio.wav"
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def caption_my_image(image_path):
|
| 24 |
+
image = image_pipe(image_path)
|
| 25 |
+
caption_text = image[0]['generated_text']
|
| 26 |
+
return generate_audio(caption_text)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
demo = gr.Interface(fn=caption_my_image,
|
| 30 |
+
inputs=[gr.Image(label="Image",type="pil")],
|
| 31 |
+
outputs=[gr.Audio(label="Image Caption")],
|
| 32 |
+
title="@SmartChoiceLearningHubs HF project 1 :Image to Text to Speech",
|
| 33 |
+
description="This app generates a caption for an image and converts the caption to speech.")
|
| 34 |
+
|
| 35 |
+
demo.launch()
|