# import gradio as gr # import cv2 # import numpy as np # import onnxruntime as ort # # Load the ONNX model using onnxruntime # onnx_model_path = "Model_IV.onnx" # Update with your ONNX model path # session = ort.InferenceSession(onnx_model_path) # # Function to perform object detection with the ONNX model # def detect_objects(frame, confidence_threshold=0.5): # # Convert the frame from BGR (OpenCV) to RGB # image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # # Preprocessing: Resize and normalize the image # # Assuming YOLO model input is 640x640, update according to your model's input size # input_size = (640, 640) # image_resized = cv2.resize(image, input_size) # image_normalized = image_resized / 255.0 # Normalize to [0, 1] # image_input = np.transpose(image_normalized, (2, 0, 1)) # Change to CHW format # image_input = np.expand_dims(image_input, axis=0).astype(np.float32) # Add batch dimension # # Perform inference # inputs = {session.get_inputs()[0].name: image_input} # outputs = session.run(None, inputs) # # # Assuming YOLO model outputs are in the form of [boxes, confidences, class_probs] # # boxes, confidences, class_probs = outputs # # # Post-processing: Filter boxes by confidence threshold # # detections = [] # # for i, confidence in enumerate(confidences[0]): # # if confidence >= confidence_threshold: # # x1, y1, x2, y2 = boxes[0][i] # # class_id = np.argmax(class_probs[0][i]) # Get class with highest probability # # detections.append((x1, y1, x2, y2, confidence, class_id)) # # # Draw bounding boxes and labels on the image # # for (x1, y1, x2, y2, confidence, class_id) in detections: # # color = (0, 255, 0) # Green color for bounding boxes # # cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2) # # label = f"Class {class_id}: {confidence:.2f}" # # cv2.putText(image, label, (int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) # # # Convert the image back to BGR for displaying in Gradio # # image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # return outputs # # Gradio interface to use the webcam for real-time object detection # # Added a slider for the confidence threshold # iface = gr.Interface(fn=detect_objects, # #inputs=[ # # gr.Video(sources="webcam", type="numpy"), # Webcam input # inputs = gr.Image(sources=["webcam"], type="numpy"), # # gr.Slider(minimum=0.0, maximum=1.0, default=0.5, label="Confidence Threshold") # Confidence slider # # ], # outputs="image") # Show output image with bounding boxes # iface.launch() import gradio as gr import cv2 from huggingface_hub import hf_hub_download from gradio_webrtc import WebRTC from twilio.rest import Client import os from inference import YOLOv8 model_file = hf_hub_download( repo_id="aje6/ASL-Fingerspelling-Detection", filename="onnx/Model_IV.onnx" ) model = YOLOv8(model_file) account_sid = os.environ.get("TWILIO_ACCOUNT_SID") auth_token = os.environ.get("TWILIO_AUTH_TOKEN") if account_sid and auth_token: client = Client(account_sid, auth_token) token = client.tokens.create() rtc_configuration = { "iceServers": token.ice_servers, "iceTransportPolicy": "relay", } else: rtc_configuration = None def detection(image, conf_threshold=0.3): image = cv2.resize(image, (model.input_width, model.input_height)) new_image = model.detect_objects(image, conf_threshold) return cv2.resize(new_image, (500, 500)) css = """.my-group {max-width: 600px !important; max-height: 600 !important;} .my-column {display: flex !important; justify-content: center !important; align-items: center !important};""" with gr.Blocks(css=css) as demo: gr.HTML( """