import numpy as np, parselmouth, torch, pdb, sys, os from time import time as ttime import torch.nn.functional as F import torchcrepe # Fork feature. Use the crepe f0 algorithm. New dependency (pip install torchcrepe) from torch import Tensor import scipy.signal as signal import pyworld, os, traceback, faiss, librosa, torchcrepe from scipy import signal from functools import lru_cache now_dir = os.getcwd() sys.path.append(now_dir) bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000) input_audio_path2wav = {} #A fun little addition from my personal RVC branch. #You don't have to implement it if you don't have to from config import Config config=Config() from rmvpe import RMVPE print("Preloading RMVPE model...") model_rmvpe = RMVPE("rmvpe.pt", is_half=config.is_half, device=config.device) del config @lru_cache def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period): audio = input_audio_path2wav[input_audio_path] f0, t = pyworld.harvest( audio, fs=fs, f0_ceil=f0max, f0_floor=f0min, frame_period=frame_period, ) f0 = pyworld.stonemask(audio, f0, t, fs) return f0 def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比 # print(data1.max(),data2.max()) rms1 = librosa.feature.rms( y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2 ) # 每半秒一个点 rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2) rms1 = torch.from_numpy(rms1) rms1 = F.interpolate( rms1.unsqueeze(0), size=data2.shape[0], mode="linear" ).squeeze() rms2 = torch.from_numpy(rms2) rms2 = F.interpolate( rms2.unsqueeze(0), size=data2.shape[0], mode="linear" ).squeeze() rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6) data2 *= ( torch.pow(rms1, torch.tensor(1 - rate)) * torch.pow(rms2, torch.tensor(rate - 1)) ).numpy() return data2 class VC(object): def __init__(self, tgt_sr, config): self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = ( config.x_pad, config.x_query, config.x_center, config.x_max, config.is_half, ) self.sr = 16000 # hubert输入采样率 self.window = 160 # 每帧点数 self.t_pad = self.sr * self.x_pad # 每条前后pad时间 self.t_pad_tgt = tgt_sr * self.x_pad self.t_pad2 = self.t_pad * 2 self.t_query = self.sr * self.x_query # 查询切点前后查询时间 self.t_center = self.sr * self.x_center # 查询切点位置 self.t_max = self.sr * self.x_max # 免查询时长阈值 self.device = config.device # Fork Feature: Get the best torch device to use for f0 algorithms that require a torch device. Will return the type (torch.device) def get_optimal_torch_device(self, index: int = 0) -> torch.device: # Get cuda device if torch.cuda.is_available(): return torch.device( f"cuda:{index % torch.cuda.device_count()}" ) # Very fast elif torch.backends.mps.is_available(): return torch.device("mps") # Insert an else here to grab "xla" devices if available. TO DO later. Requires the torch_xla.core.xla_model library # Else wise return the "cpu" as a torch device, return torch.device("cpu") # Fork Feature: Compute f0 with the crepe method def get_f0_crepe_computation( self, x, f0_min, f0_max, p_len, hop_length=160, # 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time. model="full", # Either use crepe-tiny "tiny" or crepe "full". Default is full ): x = x.astype( np.float32 ) # fixes the F.conv2D exception. We needed to convert double to float. x /= np.quantile(np.abs(x), 0.999) torch_device = self.get_optimal_torch_device() audio = torch.from_numpy(x).to(torch_device, copy=True) audio = torch.unsqueeze(audio, dim=0) if audio.ndim == 2 and audio.shape[0] > 1: audio = torch.mean(audio, dim=0, keepdim=True).detach() audio = audio.detach() print("Initiating prediction with a crepe_hop_length of: " + str(hop_length)) pitch: Tensor = torchcrepe.predict( audio, self.sr, hop_length, f0_min, f0_max, model, batch_size=hop_length * 2, device=torch_device, pad=True, ) p_len = p_len or x.shape[0] // hop_length # Resize the pitch for final f0 source = np.array(pitch.squeeze(0).cpu().float().numpy()) source[source < 0.001] = np.nan target = np.interp( np.arange(0, len(source) * p_len, len(source)) / p_len, np.arange(0, len(source)), source, ) f0 = np.nan_to_num(target) return f0 # Resized f0 def get_f0_official_crepe_computation( self, x, f0_min, f0_max, model="full", ): # Pick a batch size that doesn't cause memory errors on your gpu batch_size = 512 # Compute pitch using first gpu audio = torch.tensor(np.copy(x))[None].float() f0, pd = torchcrepe.predict( audio, self.sr, self.window, f0_min, f0_max, model, batch_size=batch_size, device=self.device, return_periodicity=True, ) pd = torchcrepe.filter.median(pd, 3) f0 = torchcrepe.filter.mean(f0, 3) f0[pd < 0.1] = 0 f0 = f0[0].cpu().numpy() return f0 # Fork Feature: Compute pYIN f0 method def get_f0_pyin_computation(self, x, f0_min, f0_max): y, sr = librosa.load("saudio/Sidney.wav", self.sr, mono=True) f0, _, _ = librosa.pyin(y, sr=self.sr, fmin=f0_min, fmax=f0_max) f0 = f0[1:] # Get rid of extra first frame return f0 # Fork Feature: Acquire median hybrid f0 estimation calculation def get_f0_hybrid_computation( self, methods_str, input_audio_path, x, f0_min, f0_max, p_len, filter_radius, crepe_hop_length, time_step, ): # Get various f0 methods from input to use in the computation stack s = methods_str s = s.split("hybrid")[1] s = s.replace("[", "").replace("]", "") methods = s.split("+") f0_computation_stack = [] print("Calculating f0 pitch estimations for methods: %s" % str(methods)) x = x.astype(np.float32) x /= np.quantile(np.abs(x), 0.999) # Get f0 calculations for all methods specified for method in methods: f0 = None if method == "pm": f0 = ( parselmouth.Sound(x, self.sr) .to_pitch_ac( time_step=time_step / 1000, voicing_threshold=0.6, pitch_floor=f0_min, pitch_ceiling=f0_max, ) .selected_array["frequency"] ) pad_size = (p_len - len(f0) + 1) // 2 if pad_size > 0 or p_len - len(f0) - pad_size > 0: f0 = np.pad( f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant" ) elif method == "crepe": f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max) f0 = f0[1:] # Get rid of extra first frame elif method == "crepe-tiny": f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, "tiny") f0 = f0[1:] # Get rid of extra first frame elif method == "mangio-crepe": f0 = self.get_f0_crepe_computation( x, f0_min, f0_max, p_len, crepe_hop_length ) elif method == "mangio-crepe-tiny": f0 = self.get_f0_crepe_computation( x, f0_min, f0_max, p_len, crepe_hop_length, "tiny" ) elif method == "harvest": f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10) if filter_radius > 2: f0 = signal.medfilt(f0, 3) f0 = f0[1:] # Get rid of first frame. elif method == "dio": # Potentially buggy? f0, t = pyworld.dio( x.astype(np.double), fs=self.sr, f0_ceil=f0_max, f0_floor=f0_min, frame_period=10, ) f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr) f0 = signal.medfilt(f0, 3) f0 = f0[1:] # elif method == "pyin": Not Working just yet # f0 = self.get_f0_pyin_computation(x, f0_min, f0_max) # Push method to the stack f0_computation_stack.append(f0) for fc in f0_computation_stack: print(len(fc)) print("Calculating hybrid median f0 from the stack of: %s" % str(methods)) f0_median_hybrid = None if len(f0_computation_stack) == 1: f0_median_hybrid = f0_computation_stack[0] else: f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0) return f0_median_hybrid def get_f0( self, input_audio_path, x, p_len, f0_up_key, f0_method, filter_radius, crepe_hop_length, inp_f0=None, ): global input_audio_path2wav time_step = self.window / self.sr * 1000 f0_min = 50 f0_max = 1100 f0_mel_min = 1127 * np.log(1 + f0_min / 700) f0_mel_max = 1127 * np.log(1 + f0_max / 700) if f0_method == "pm": f0 = ( parselmouth.Sound(x, self.sr) .to_pitch_ac( time_step=time_step / 1000, voicing_threshold=0.6, pitch_floor=f0_min, pitch_ceiling=f0_max, ) .selected_array["frequency"] ) pad_size = (p_len - len(f0) + 1) // 2 if pad_size > 0 or p_len - len(f0) - pad_size > 0: f0 = np.pad( f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant" ) elif f0_method == "harvest": input_audio_path2wav[input_audio_path] = x.astype(np.double) f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10) if filter_radius > 2: f0 = signal.medfilt(f0, 3) elif f0_method == "dio": # Potentially Buggy? f0, t = pyworld.dio( x.astype(np.double), fs=self.sr, f0_ceil=f0_max, f0_floor=f0_min, frame_period=10, ) f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr) f0 = signal.medfilt(f0, 3) elif f0_method == "crepe": f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max) elif f0_method == "crepe-tiny": f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, "tiny") elif f0_method == "mangio-crepe": f0 = self.get_f0_crepe_computation( x, f0_min, f0_max, p_len, crepe_hop_length ) elif f0_method == "mangio-crepe-tiny": f0 = self.get_f0_crepe_computation( x, f0_min, f0_max, p_len, crepe_hop_length, "tiny" ) elif f0_method == "rmvpe": f0 = model_rmvpe.infer_from_audio(x, thred=0.03) elif "hybrid" in f0_method: # Perform hybrid median pitch estimation input_audio_path2wav[input_audio_path] = x.astype(np.double) f0 = self.get_f0_hybrid_computation( f0_method, input_audio_path, x, f0_min, f0_max, p_len, filter_radius, crepe_hop_length, time_step, ) f0 *= pow(2, f0_up_key / 12) # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()])) tf0 = self.sr // self.window # 每秒f0点数 if inp_f0 is not None: delta_t = np.round( (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1 ).astype("int16") replace_f0 = np.interp( list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1] ) shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0] f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[ :shape ] # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()])) f0bak = f0.copy() f0_mel = 1127 * np.log(1 + f0 / 700) f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / ( f0_mel_max - f0_mel_min ) + 1 f0_mel[f0_mel <= 1] = 1 f0_mel[f0_mel > 255] = 255 f0_coarse = np.rint(f0_mel).astype(np.int) return f0_coarse, f0bak # 1-0 def vc( self, model, net_g, sid, audio0, pitch, pitchf, times, index, big_npy, index_rate, version, protect, ): # ,file_index,file_big_npy feats = torch.from_numpy(audio0) if self.is_half: feats = feats.half() else: feats = feats.float() if feats.dim() == 2: # double channels feats = feats.mean(-1) assert feats.dim() == 1, feats.dim() feats = feats.view(1, -1) padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False) inputs = { "source": feats.to(self.device), "padding_mask": padding_mask, "output_layer": 9 if version == "v1" else 12, } t0 = ttime() with torch.no_grad(): feats = model(inputs["source"])["last_hidden_state"] # logits = model.extract_features(**inputs) # feats = model.final_proj(logits[0]) if version == "v1" else logits[0] if protect < 0.5 and pitch != None and pitchf != None: feats0 = feats.clone() if ( isinstance(index, type(None)) == False and isinstance(big_npy, type(None)) == False and index_rate != 0 ): npy = feats[0].cpu().numpy() if self.is_half: npy = npy.astype("float32") # _, I = index.search(npy, 1) # npy = big_npy[I.squeeze()] score, ix = index.search(npy, k=8) weight = np.square(1 / score) weight /= weight.sum(axis=1, keepdims=True) npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1) if self.is_half: npy = npy.astype("float16") feats = ( torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate + (1 - index_rate) * feats ) feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) if protect < 0.5 and pitch != None and pitchf != None: feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute( 0, 2, 1 ) t1 = ttime() p_len = audio0.shape[0] // self.window if feats.shape[1] < p_len: p_len = feats.shape[1] if pitch != None and pitchf != None: pitch = pitch[:, :p_len] pitchf = pitchf[:, :p_len] if protect < 0.5 and pitch != None and pitchf != None: pitchff = pitchf.clone() pitchff[pitchf > 0] = 1 pitchff[pitchf < 1] = protect pitchff = pitchff.unsqueeze(-1) feats = feats * pitchff + feats0 * (1 - pitchff) feats = feats.to(feats0.dtype) p_len = torch.tensor([p_len], device=self.device).long() with torch.no_grad(): if pitch != None and pitchf != None: audio1 = ( (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0]) .data.cpu() .float() .numpy() ) else: audio1 = ( (net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy() ) del feats, p_len, padding_mask if torch.cuda.is_available(): torch.cuda.empty_cache() t2 = ttime() times[0] += t1 - t0 times[2] += t2 - t1 return audio1 def pipeline( self, model, net_g, sid, audio, input_audio_path, times, f0_up_key, f0_method, file_index, # file_big_npy, index_rate, if_f0, filter_radius, tgt_sr, resample_sr, rms_mix_rate, version, protect, crepe_hop_length, f0_file=None, ): if ( file_index != "" # and file_big_npy != "" # and os.path.exists(file_big_npy) == True and os.path.exists(file_index) == True and index_rate != 0 ): try: index = faiss.read_index(file_index) # big_npy = np.load(file_big_npy) big_npy = index.reconstruct_n(0, index.ntotal) except: traceback.print_exc() index = big_npy = None else: index = big_npy = None audio = signal.filtfilt(bh, ah, audio) audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect") opt_ts = [] if audio_pad.shape[0] > self.t_max: audio_sum = np.zeros_like(audio) for i in range(self.window): audio_sum += audio_pad[i : i - self.window] for t in range(self.t_center, audio.shape[0], self.t_center): opt_ts.append( t - self.t_query + np.where( np.abs(audio_sum[t - self.t_query : t + self.t_query]) == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min() )[0][0] ) s = 0 audio_opt = [] t = None t1 = ttime() audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect") p_len = audio_pad.shape[0] // self.window inp_f0 = None if hasattr(f0_file, "name") == True: try: with open(f0_file.name, "r") as f: lines = f.read().strip("\n").split("\n") inp_f0 = [] for line in lines: inp_f0.append([float(i) for i in line.split(",")]) inp_f0 = np.array(inp_f0, dtype="float32") except: traceback.print_exc() sid = torch.tensor(sid, device=self.device).unsqueeze(0).long() pitch, pitchf = None, None if if_f0 == 1: pitch, pitchf = self.get_f0( input_audio_path, audio_pad, p_len, f0_up_key, f0_method, filter_radius, crepe_hop_length, inp_f0, ) pitch = pitch[:p_len] pitchf = pitchf[:p_len] if self.device == "mps": pitchf = pitchf.astype(np.float32) pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long() pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float() t2 = ttime() times[1] += t2 - t1 for t in opt_ts: t = t // self.window * self.window if if_f0 == 1: audio_opt.append( self.vc( model, net_g, sid, audio_pad[s : t + self.t_pad2 + self.window], pitch[:, s // self.window : (t + self.t_pad2) // self.window], pitchf[:, s // self.window : (t + self.t_pad2) // self.window], times, index, big_npy, index_rate, version, protect, )[self.t_pad_tgt : -self.t_pad_tgt] ) else: audio_opt.append( self.vc( model, net_g, sid, audio_pad[s : t + self.t_pad2 + self.window], None, None, times, index, big_npy, index_rate, version, protect, )[self.t_pad_tgt : -self.t_pad_tgt] ) s = t if if_f0 == 1: audio_opt.append( self.vc( model, net_g, sid, audio_pad[t:], pitch[:, t // self.window :] if t is not None else pitch, pitchf[:, t // self.window :] if t is not None else pitchf, times, index, big_npy, index_rate, version, protect, )[self.t_pad_tgt : -self.t_pad_tgt] ) else: audio_opt.append( self.vc( model, net_g, sid, audio_pad[t:], None, None, times, index, big_npy, index_rate, version, protect, )[self.t_pad_tgt : -self.t_pad_tgt] ) audio_opt = np.concatenate(audio_opt) if rms_mix_rate != 1: audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate) if resample_sr >= 16000 and tgt_sr != resample_sr: audio_opt = librosa.resample( audio_opt, orig_sr=tgt_sr, target_sr=resample_sr ) audio_max = np.abs(audio_opt).max() / 0.99 max_int16 = 32768 if audio_max > 1: max_int16 /= audio_max audio_opt = (audio_opt * max_int16).astype(np.int16) del pitch, pitchf, sid if torch.cuda.is_available(): torch.cuda.empty_cache() return audio_opt