Spaces:
Sleeping
Sleeping
File size: 1,095 Bytes
1c4b4a8 439eda0 2ffd512 1c4b4a8 15c0144 01adf07 1c4b4a8 d9550bc 2ffd512 1c4b4a8 490314f 39f38cd f705acb 39f38cd 2ffd512 1c4b4a8 2ffd512 b9cf44f 2ffd512 b9cf44f 2ffd512 d9550bc 1c4b4a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import gradio as gr
import torch
from transformers import pipeline
import numpy as np
import time
pipe_base = pipeline("automatic-speech-recognition", model="aitor-medrano/lara-base-pushed")
pipe_small = pipeline("automatic-speech-recognition", model="aitor-medrano/whisper-small-lara")
def greet(grabacion, modelo="base"):
inicio = time.time()
sr, y = grabacion
# Pasamos el array de muestras a tipo NumPy de 32 bits
y = y.astype(np.float32)
y /= np.max(np.abs(y))
if modelo is not None and modelo == "base":
pipe = pipe_base
else:
modelo = "small"
pipe = pipe_small
result = modelo + ":" + pipe({"sampling_rate": sr, "raw": y})["text"]
fin = time.time()
return result, fin - inicio
demo = gr.Interface(fn=greet,
inputs=[
gr.Audio(),
gr.Dropdown(
["base", "small"], label="Modelo", info="Modelos de Lara entrenados"
)
],
outputs=[
gr.Text(label="Salida"),
gr.Number(label="Tiempo")
])
demo.launch() |