--- title: Cinemo app_file: demo.py sdk: gradio sdk_version: 4.37.2 --- ## Cinemo: Consistent and Controllable Image Animation with Motion Diffusion Models<br><sub>Official PyTorch Implementation</sub> [![Arxiv](https://img.shields.io/badge/Arxiv-b31b1b.svg)](https://arxiv.org/abs/2407.15642) [![Project Page](https://img.shields.io/badge/Project-Website-blue)](https://maxin-cn.github.io/cinemo_project/) This repo contains pre-trained weights, and sampling code for our paper exploring image animation with motion diffusion models (Cinemo). You can find more visualizations on our [project page](https://maxin-cn.github.io/cinemo_project/). In this project, we propose a novel method called Cinemo, which can perform motion-controllable image animation with strong consistency and smoothness. To improve motion smoothness, Cinemo learns the distribution of motion residuals, rather than directly generating subsequent frames. Additionally, a structural similarity index-based method is proposed to control the motion intensity. Furthermore, we propose a noise refinement technique based on discrete cosine transformation to ensure temporal consistency. These three methods help Cinemo generate highly consistent, smooth, and motion-controlled image animation results. Compared to previous methods, Cinemo offers simpler and more precise user control and better generative performance. <div align="center"> <img src="visuals/pipeline.svg"> </div> ## News - (🔥 New) Jul. 23, 2024. 💥 Our paper is released on [arxiv](https://arxiv.org/abs/2407.15642). - (🔥 New) Jun. 2, 2024. 💥 The inference code is released. The checkpoint can be found [here](https://huggingface.co/maxin-cn/Cinemo/tree/main). ## Setup First, download and set up the repo: ```bash git clone https://github.com/maxin-cn/Cinemo cd Cinemo ``` We provide an [`environment.yml`](environment.yml) file that can be used to create a Conda environment. If you only want to run pre-trained models locally on CPU, you can remove the `cudatoolkit` and `pytorch-cuda` requirements from the file. ```bash conda env create -f environment.yml conda activate cinemo ``` ## Animation You can sample from our **pre-trained Cinemo models** with [`animation.py`](pipelines/animation.py). Weights for our pre-trained Cinemo model can be found [here](https://huggingface.co/maxin-cn/Cinemo/tree/main). The script has various arguments for adjusting sampling steps, changing the classifier-free guidance scale, etc: ```bash bash pipelines/animation.sh ``` All related checkpoints will download automatically and then you will get the following results, <table style="width:100%; text-align:center;"> <tr> <td align="center">Input image</td> <td align="center">Output video</td> <td align="center">Input image</td> <td align="center">Output video</td> </tr> <tr> <td align="center"><img src="visuals/animations/people_walking/0.jpg" width="100%"></td> <td align="center"><img src="visuals/animations/people_walking/people_walking.gif" width="100%"></td> <td align="center"><img src="visuals/animations/sea_swell/0.jpg" width="100%"></td> <td align="center"><img src="visuals/animations/sea_swell/sea_swell.gif" width="100%"></td> </tr> <tr> <td align="center" colspan="2">"People Walking"</td> <td align="center" colspan="2">"Sea Swell"</td> </tr> <tr> <td align="center"><img src="visuals/animations/girl_dancing_under_the_stars/0.jpg" width="100%"></td> <td align="center"><img src="visuals/animations/girl_dancing_under_the_stars/girl_dancing_under_the_stars.gif" width="100%"></td> <td align="center"><img src="visuals/animations/dragon_glowing_eyes/0.jpg" width="100%"></td> <td align="center"><img src="visuals/animations/dragon_glowing_eyes/dragon_glowing_eyes.gif" width="100%"></td> </tr> <tr> <td align="center" colspan="2">"Girl Dancing under the Stars"</td> <td align="center" colspan="2">"Dragon Glowing Eyes"</td> </tr> </table> ## Other Applications You can also utilize Cinemo for other applications, such as motion transfer and video editing: ```bash bash pipelines/video_editing.sh ``` All related checkpoints will download automatically and you will get the following results, <table style="width:100%; text-align:center;"> <tr> <td align="center">Input video</td> <td align="center">First frame</td> <td align="center">Edited first frame</td> <td align="center">Output video</td> </tr> <tr> <td align="center"><img src="visuals/video_editing/origin/a_corgi_walking_in_the_park_at_sunrise_oil_painting_style.gif" width="100%"></td> <td align="center"><img src="visuals/video_editing/origin/0.jpg" width="100%"></td> <td align="center"><img src="visuals/video_editing/edit/0.jpg" width="100%"></td> <td align="center"><img src="visuals/video_editing/edit/editing_a_corgi_walking_in_the_park_at_sunrise_oil_painting_style.gif" width="100%"></td> </tr> </table> ## Citation If you find this work useful for your research, please consider citing it. ```bibtex @article{ma2024cinemo, title={Cinemo: Latent Diffusion Transformer for Video Generation}, author={Ma, Xin and Wang, Yaohui and Jia, Gengyun and Chen, Xinyuan and Li, Yuan-Fang and Chen, Cunjian and Qiao, Yu}, journal={arXiv preprint arXiv:2407.15642}, year={2024} } ``` ## Acknowledgments Cinemo has been greatly inspired by the following amazing works and teams: [LaVie](https://github.com/Vchitect/LaVie) and [SEINE](https://github.com/Vchitect/SEINE), we thank all the contributors for open-sourcing. ## License The code and model weights are licensed under [LICENSE](LICENSE).