import spaces import argparse import os import time from os import path import shutil from datetime import datetime from safetensors.torch import load_file from huggingface_hub import hf_hub_download import gradio as gr import torch from diffusers import FluxPipeline from diffusers.pipelines.stable_diffusion import safety_checker from PIL import Image from transformers import AutoProcessor, AutoModelForCausalLM import subprocess # Flash Attention 설치 subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) # Setup and initialization code cache_path = path.join(path.dirname(path.abspath(__file__)), "models") PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".") gallery_path = path.join(PERSISTENT_DIR, "gallery") os.environ["TRANSFORMERS_CACHE"] = cache_path os.environ["HF_HUB_CACHE"] = cache_path os.environ["HF_HOME"] = cache_path torch.backends.cuda.matmul.allow_tf32 = True # Create gallery directory if not path.exists(gallery_path): os.makedirs(gallery_path, exist_ok=True) # Florence 모델 초기화 florence_models = { 'gokaygokay/Florence-2-Flux-Large': AutoModelForCausalLM.from_pretrained( 'gokaygokay/Florence-2-Flux-Large', trust_remote_code=True ).eval(), 'gokaygokay/Florence-2-Flux': AutoModelForCausalLM.from_pretrained( 'gokaygokay/Florence-2-Flux', trust_remote_code=True ).eval(), } florence_processors = { 'gokaygokay/Florence-2-Flux-Large': AutoProcessor.from_pretrained( 'gokaygokay/Florence-2-Flux-Large', trust_remote_code=True ), 'gokaygokay/Florence-2-Flux': AutoProcessor.from_pretrained( 'gokaygokay/Florence-2-Flux', trust_remote_code=True ), } def filter_prompt(prompt): inappropriate_keywords = [ "sex" ] # "nude", "naked", "nsfw", "porn", "sex", "explicit", "adult", "xxx", # "erotic", "sensual", "seductive", "provocative", "intimate", # "violence", "gore", "blood", "death", "kill", "murder", "torture", # "drug", "suicide", "abuse", "hate", "discrimination" # ] prompt_lower = prompt.lower() for keyword in inappropriate_keywords: if keyword in prompt_lower: return False, "부적절한 내용이 포함된 프롬프트입니다." return True, prompt class timer: def __init__(self, method_name="timed process"): self.method = method_name def __enter__(self): self.start = time.time() print(f"{self.method} starts") def __exit__(self, exc_type, exc_val, exc_tb): end = time.time() print(f"{self.method} took {str(round(end - self.start, 2))}s") # Model initialization if not path.exists(cache_path): os.makedirs(cache_path, exist_ok=True) pipe = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16 ) pipe.load_lora_weights( hf_hub_download( "ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors" ) ) pipe.fuse_lora(lora_scale=0.125) pipe.to(device="cuda", dtype=torch.bfloat16) pipe.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained( "CompVis/stable-diffusion-safety-checker" ) def save_image(image): """Save the generated image and return the path""" try: if not os.path.exists(gallery_path): try: os.makedirs(gallery_path, exist_ok=True) except Exception as e: print(f"Failed to create gallery directory: {str(e)}") return None timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") random_suffix = os.urandom(4).hex() filename = f"generated_{timestamp}_{random_suffix}.png" filepath = os.path.join(gallery_path, filename) try: if isinstance(image, Image.Image): image.save(filepath, "PNG", quality=100) else: image = Image.fromarray(image) image.save(filepath, "PNG", quality=100) if not os.path.exists(filepath): print(f"Warning: Failed to verify saved image at {filepath}") return None return filepath except Exception as e: print(f"Failed to save image: {str(e)}") return None except Exception as e: print(f"Error in save_image: {str(e)}") return None def load_gallery(): try: os.makedirs(gallery_path, exist_ok=True) image_files = [] for f in os.listdir(gallery_path): if f.lower().endswith(('.png', '.jpg', '.jpeg')): full_path = os.path.join(gallery_path, f) image_files.append((full_path, os.path.getmtime(full_path))) image_files.sort(key=lambda x: x[1], reverse=True) return [f[0] for f in image_files] except Exception as e: print(f"Error loading gallery: {str(e)}") return [] @spaces.GPU def generate_caption(image, model_name='gokaygokay/Florence-2-Flux-Large'): image = Image.fromarray(image) task_prompt = "" prompt = task_prompt + "Describe this image in great detail." if image.mode != "RGB": image = image.convert("RGB") model = florence_models[model_name] processor = florence_processors[model_name] inputs = processor(text=prompt, images=image, return_tensors="pt") generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3, repetition_penalty=1.10, ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height)) return parsed_answer[""] @spaces.GPU def process_and_save_image(height, width, steps, scales, prompt, seed): is_safe, filtered_prompt = filter_prompt(prompt) if not is_safe: gr.Warning("The prompt contains inappropriate content.") return None, load_gallery() with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): try: generated_image = pipe( prompt=[filtered_prompt], generator=torch.Generator().manual_seed(int(seed)), num_inference_steps=int(steps), guidance_scale=float(scales), height=int(height), width=int(width), max_sequence_length=256 ).images[0] saved_path = save_image(generated_image) if saved_path is None: print("Warning: Failed to save generated image") return generated_image, load_gallery() except Exception as e: print(f"Error in image generation: {str(e)}") return None, load_gallery() def get_random_seed(): return torch.randint(0, 1000000, (1,)).item() def update_seed(): return get_random_seed() # CSS 스타일 css = """ footer {display: none !important} .gradio-container { max-width: 1200px; margin: auto; } .contain { background: rgba(255, 255, 255, 0.05); border-radius: 12px; padding: 20px; } .generate-btn { background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important; border: none !important; color: white !important; } .generate-btn:hover { transform: translateY(-2px); box-shadow: 0 5px 15px rgba(0,0,0,0.2); } .title { text-align: center; font-size: 2.5em; font-weight: bold; margin-bottom: 1em; background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; } .tabs { margin-top: 20px; border-radius: 10px; overflow: hidden; } .tab-nav { background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%); padding: 10px; } .tab-nav button { color: white; border: none; padding: 10px 20px; margin: 0 5px; border-radius: 5px; transition: all 0.3s ease; } .tab-nav button.selected { background: rgba(255, 255, 255, 0.2); } .image-upload-container { border: 2px dashed #4B79A1; border-radius: 10px; padding: 20px; text-align: center; transition: all 0.3s ease; } .image-upload-container:hover { border-color: #283E51; background: rgba(75, 121, 161, 0.1); } .primary-btn { background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important; font-size: 1.2em !important; padding: 12px 20px !important; margin-top: 20px !important; } hr { border: none; border-top: 1px solid rgba(75, 121, 161, 0.2); margin: 20px 0; } .input-section { background: rgba(255, 255, 255, 0.03); border-radius: 12px; padding: 20px; margin-bottom: 20px; } .output-section { background: rgba(255, 255, 255, 0.03); border-radius: 12px; padding: 20px; } .example-images { display: grid; grid-template-columns: repeat(4, 1fr); gap: 10px; margin-bottom: 20px; } .example-images img { width: 100%; height: 150px; object-fit: cover; border-radius: 8px; cursor: pointer; transition: transform 0.2s; } .example-images img:hover { transform: scale(1.05); } """ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: gr.HTML('
FLUX VisionReply
') gr.HTML('
Upload an image(Image2Text2Image)
') with gr.Row(): # 왼쪽 컬럼: 입력 섹션 with gr.Column(scale=3): # 이미지 업로드 섹션 input_image = gr.Image( label="Upload Image (Optional)", type="numpy", elem_classes=["image-upload-container"] ) # 예시 이미지 갤러리 추가 example_images = [ "1.jpg", "2.jpg", "3.jpg", "4.jpg" ] gr.Examples( examples=example_images, inputs=input_image, label="Example Images", examples_per_page=4 ) # Florence 모델 선택 - 숨김 처리 florence_model = gr.Dropdown( choices=list(florence_models.keys()), label="Caption Model", value='gokaygokay/Florence-2-Flux-Large', visible=False ) caption_button = gr.Button( "🔍 Generate Caption from Image", elem_classes=["generate-btn"] ) # 구분선 gr.HTML('
') # 텍스트 프롬프트 섹션 prompt = gr.Textbox( label="Image Description", placeholder="Enter text description or use generated caption above...", lines=3 ) with gr.Accordion("Advanced Settings", open=False): with gr.Row(): height = gr.Slider( label="Height", minimum=256, maximum=1152, step=64, value=1024 ) width = gr.Slider( label="Width", minimum=256, maximum=1152, step=64, value=1024 ) with gr.Row(): steps = gr.Slider( label="Inference Steps", minimum=6, maximum=25, step=1, value=8 ) scales = gr.Slider( label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5 ) seed = gr.Number( label="Seed", value=get_random_seed(), precision=0 ) randomize_seed = gr.Button( "🎲 Randomize Seed", elem_classes=["generate-btn"] ) generate_btn = gr.Button( "✨ Generate Image", elem_classes=["generate-btn", "primary-btn"] ) # 오른쪽 컬럼: 출력 섹션 with gr.Column(scale=4): output = gr.Image( label="Generated Image", elem_classes=["output-image"] ) gallery = gr.Gallery( label="Generated Images Gallery", show_label=True, columns=[4], rows=[2], height="auto", object_fit="cover", elem_classes=["gallery-container"] ) gallery.value = load_gallery() # Event handlers caption_button.click( generate_caption, inputs=[input_image, florence_model], outputs=[prompt] ) generate_btn.click( process_and_save_image, inputs=[height, width, steps, scales, prompt, seed], outputs=[output, gallery] ) randomize_seed.click( update_seed, outputs=[seed] ) generate_btn.click( update_seed, outputs=[seed] ) if __name__ == "__main__": demo.launch(allowed_paths=[PERSISTENT_DIR])