from textwrap import dedent import streamlit as st from defaults import ( PROJECT_NAME, ARGILLA_URL, DIBT_PARENT_APP_URL, DATASET_URL, DATASET_REPO_ID, ) def project_sidebar(): if PROJECT_NAME == "DEFAULT_DOMAIN": st.warning( "Please set up the project configuration in the parent app before proceeding." ) st.stop() st.sidebar.subheader(f"A Data Growing Project in the domain of {PROJECT_NAME}") st.sidebar.markdown( """ This space helps you create a dataset seed for building diverse domain-specific datasets for aligning models. """ ) st.sidebar.link_button(f"📚 Dataset Repo", DATASET_URL) st.sidebar.link_button(f"🤖 Argilla Space", ARGILLA_URL) hub_username = DATASET_REPO_ID.split("/")[0] project_name = DATASET_REPO_ID.split("/")[1] st.session_state["project_name"] = project_name st.session_state["hub_username"] = hub_username st.session_state["hub_token"] = st.sidebar.text_input( "Hub Token", type="password", value=None ) if ( st.sidebar.checkbox("Save Hub Token") and st.session_state["hub_token"] is not None ): os.environ["HF_TOKEN"] = st.session_state["hub_token"] st.sidebar.link_button( "🤗 Get your Hub Token", "https://huggingface.co/settings/tokens" ) if all( ( st.session_state.get("project_name"), st.session_state.get("hub_username"), st.session_state.get("hub_token"), ) ): st.success(f"Using the dataset repo {hub_username}/{project_name} on the Hub") st.sidebar.divider() st.sidebar.link_button("🧑‍🌾 New Project", DIBT_PARENT_APP_URL) if st.session_state["hub_token"] is None: st.error("Please provide a Hub token to generate answers") st.stop() def create_seed_terms(topics: list[str], perspectives: list[str]) -> list[str]: """Create seed terms for self intruct to start from.""" return [ f"{topic} from a {perspective} perspective" for topic in topics for perspective in perspectives ] def create_application_instruction( domain: str, system_prompt: str, examples: list[dict[str, str]] ) -> str: """Create the instruction for Self-Instruct task.""" system_prompt = f"""AI assistant in the domain of {domain}. {system_prompt}""" examples_str = "" for example in examples: question = example["question"] answer = example["answer"] if len(answer) and len(question): examples_str += f"""\n- Question: {question}\n- Answer: {answer}\n""" examples_str += f"""\n- Question: {question}\n- Answer: {answer}\n""" if len(examples_str): system_prompt += """Below are some examples of questions and answers \ that the AI assistant would generate:""" system_prompt += "\nExamples:" system_prompt += f"\n{examples_str}" return system_prompt