# Downloading files from the demo repo import os os.mkdir('images') !wget -q -O images/jokowi.jpeg https://cdn.setneg.go.id/_multimedia/photo/20220218/5008WhatsApp_Image_2022-02-18_at_1.36.50_PM.jpeg !wget -q -O images/megawati.jpeg https://gallery.poskota.co.id/storage/Foto/Foto_20220602_205953_hql.jpeg !wget -q -O images/cipung.jpg https://cdn.idntimes.com/content-images/community/2022/11/rayyanza-695b5fc766d9ed00ece029dcd8177b8e-4c74e93112d56ab97dac735945a7a619_600x400.jpg import gradio as gr from PIL import Image from transformers import pipeline # import the model pipe_age = pipeline("image-classification", model="nateraw/vit-age-classifier") pipe_emotion = pipeline("image-classification", model="ahyar002/emotion_classification") def age_prediction(image): # convert to PIL image pil_image = Image.fromarray(image) # predict the image predict_age = pipe_age(pil_image) predict_emotion = pipe_emotion(pil_image) # tranform the ouput into dictionary transformed_dict_age = {item['label']: item['score'] for item in predict_age} transformed_dict_emotion = {item['label']: item['score'] for item in predict_emotion} return transformed_dict_age, transformed_dict_emotion demo = gr.Interface(age_prediction, inputs = "image", outputs= [gr.Label(num_top_classes=3), gr.Label(num_top_classes=3)], examples=[ os.path.join(os.path.abspath(''), "images/jokowi.jpeg"), os.path.join(os.path.abspath(''), "images/megawati.jpeg"), os.path.join(os.path.abspath(''), "images/cipung.jpg"), ], ) if __name__ == "__main__": demo.launch(debug=True)