Spaces:
Sleeping
Sleeping
File size: 11,712 Bytes
54632a4 47c104f 54632a4 47c104f 54632a4 47c104f 54632a4 47c104f f550dd1 54632a4 f550dd1 54632a4 f550dd1 54632a4 f550dd1 54632a4 f550dd1 47c104f f550dd1 47c104f f550dd1 47c104f f550dd1 47c104f f550dd1 47c104f f550dd1 47c104f f550dd1 47c104f f550dd1 47c104f f550dd1 47c104f f550dd1 54632a4 47c104f 54632a4 47c104f 54632a4 47c104f 54632a4 47c104f 54632a4 47c104f 54632a4 f550dd1 54632a4 47c104f 54632a4 f550dd1 47c104f 54632a4 f550dd1 47c104f 54632a4 f550dd1 54632a4 47c104f 54632a4 47c104f f550dd1 54632a4 47c104f f550dd1 47c104f f550dd1 47c104f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import os
import streamlit as st
from groq import Groq
# Set the Groq API key
os.environ["GROQ_API_KEY"] = "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"
# Initialize Groq client
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
# Define the LLaMA model to be used
MODEL_NAME = "llama3-8b-8192"
# Function to call Groq API
def call_groq_api(prompt):
try:
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model=MODEL_NAME
)
return chat_completion.choices[0].message.content
except Exception as e:
return f"Error: {str(e)}"
# Define functions for each tool
def personalized_learning_assistant(topic):
examples = [
"Explain quantum mechanics with a real-world example.",
"Describe general relativity and its significance.",
"Provide a simple explanation of machine learning and its applications."
]
prompt = f"Here are some example explanations:\n\n{examples}\n\nNow, explain the topic: {topic}. Provide a detailed, yet simple explanation with a practical example."
return call_groq_api(prompt)
def ai_coding_mentor(code_snippet):
examples = [
"Review this code snippet for optimization opportunities:\n\nCode: 'for i in range(10): print(i)'\nSuggestion: Use list comprehension for more efficient code.",
"Analyze this code snippet for best practices:\n\nCode: 'def add(a, b): return a + b'\nSuggestion: Include type hints to improve readability and maintainability."
]
prompt = f"Here are some code review examples:\n\n{examples}\n\nReview the following code snippet and provide suggestions for improvement:\n{code_snippet}. Include any potential issues or improvements."
return call_groq_api(prompt)
def smart_document_summarizer(document_text):
examples = [
"Summarize this text:\n\nText: 'Quantum computing represents a revolutionary approach to computing that leverages quantum mechanics.'\nSummary: 'Quantum computing uses quantum mechanics to advance computing technology.'",
"Create a summary for this passage:\n\nText: 'The rise of electric vehicles is a major step towards reducing global carbon emissions and combating climate change.'\nSummary: 'Electric vehicles help reduce carbon emissions and fight climate change.'"
]
prompt = f"Here are some document summarization examples:\n\n{examples}\n\nSummarize the following document text concisely:\n{document_text}. Focus on capturing the main points clearly."
return call_groq_api(prompt)
def interactive_study_planner(exam_schedule):
examples = [
"Generate a study plan for a schedule with multiple exams in a week:\n\nSchedule: '3 exams in one week'\nPlan: 'Allocate 2 hours per subject each day, with review sessions on weekends.'",
"Create a study plan for preparing for exams over a period of 2 weeks:\n\nSchedule: 'Exams in 2 weeks'\nPlan: 'Prioritize subjects based on difficulty and importance, with daily reviews and mock tests.'"
]
prompt = f"Here are some study planning examples:\n\n{examples}\n\nCreate a tailored study plan based on the following schedule:\n{exam_schedule}. Include daily study goals and break times."
return call_groq_api(prompt)
def real_time_qa_support(question):
examples = [
"Provide an answer to this question:\n\nQuestion: 'What is Newton's third law of motion?'\nAnswer: 'Newton's third law states that for every action, there is an equal and opposite reaction.'",
"Explain this concept:\n\nQuestion: 'What is the principle of conservation of energy?'\nAnswer: 'The principle of conservation of energy states that energy cannot be created or destroyed, only transformed from one form to another.'"
]
prompt = f"Here are some examples of answers to academic questions:\n\n{examples}\n\nAnswer the following question:\n{question}. Provide a clear and comprehensive explanation."
return call_groq_api(prompt)
def mental_health_check_in(feelings):
examples = [
"Offer advice for managing exam stress:\n\nFeeling: 'Stressed about upcoming exams'\nAdvice: 'Develop a study schedule, take regular breaks, and practice relaxation techniques.'",
"Provide support for feeling overwhelmed:\n\nFeeling: 'Feeling overwhelmed with coursework'\nAdvice: 'Break tasks into smaller, manageable parts and seek support from peers or a counselor.'"
]
prompt = f"Here are some examples of mental health advice:\n\n{examples}\n\nProvide advice based on the following feeling:\n{feelings}. Offer practical suggestions for improving well-being."
return call_groq_api(prompt)
# Initialize session state if not already set
if 'responses' not in st.session_state:
st.session_state['responses'] = {
"personalized_learning_assistant": "",
"ai_coding_mentor": "",
"smart_document_summarizer": "",
"interactive_study_planner": "",
"real_time_qa_support": "",
"mental_health_check_in": ""
}
# Define Streamlit app
st.set_page_config(page_title="EduNexus", page_icon=":book:", layout="wide")
# Add custom styling using Streamlit
st.markdown("""
<style>
.css-1o7k8tt {
background-color: #f5f5f5;
color: #333333;
}
.css-1o7k8tt h1 {
color: #333333;
}
.stButton {
background-color: #007bff;
color: #ffffff;
border-radius: 5px;
padding: 8px 16px;
font-size: 14px;
}
.stButton:hover {
background-color: #0056b3;
}
.stTextInput, .stTextArea {
border: 1px solid #ced4da;
border-radius: 4px;
background-color: #ffffff;
color: #333333;
}
.stTextInput::placeholder, .stTextArea::placeholder {
color: #6c757d;
}
.stSidebar {
background-color: #ffffff;
}
.stSidebar .stMarkdown {
color: #333333;
}
.footer {
background-color: #f5f5f5;
padding: 10px;
text-align: center;
color: #333333;
border-top: 1px solid #dee2e6;
}
.footer a {
color: #007bff;
margin: 0 10px;
text-decoration: none;
font-size: 16px;
}
.footer a:hover {
color: #0056b3;
}
.footer i {
font-size: 18px;
}
</style>
""", unsafe_allow_html=True)
# Define function to clear all inputs
def clear_chat():
st.session_state['responses'] = {
"personalized_learning_assistant": "",
"ai_coding_mentor": "",
"smart_document_summarizer": "",
"interactive_study_planner": "",
"real_time_qa_support": "",
"mental_health_check_in": ""
}
# Add Clear Chat button
if st.sidebar.button("Clear All", key="clear_button"):
clear_chat()
# Navigation sidebar
st.sidebar.title("EduNexus Tools")
selected_tool = st.sidebar.radio(
"Select a tool",
("Personalized Learning Assistant", "AI Coding Mentor", "Smart Document Summarizer",
"Interactive Study Planner", "Real-Time Q&A Support", "Mental Health Check-In")
)
# Display tool based on selection
st.title("EduNexus :book:")
# Common function to display response and download button
def display_response(response_key, response):
st.write(response)
st.download_button(
"Download Response",
response,
file_name=f"{response_key}.txt"
)
if selected_tool == "Personalized Learning Assistant":
st.header("Personalized Learning Assistant")
with st.form(key="learning_form"):
topic_input = st.text_input("Enter a topic you want to learn about", placeholder="e.g., Quantum Mechanics")
submit_button = st.form_submit_button("Get Explanation")
if submit_button:
explanation = personalized_learning_assistant(topic_input)
st.session_state['responses']['personalized_learning_assistant'] = explanation
if st.session_state['responses']['personalized_learning_assistant']:
display_response("personalized_learning_assistant", st.session_state['responses']['personalized_learning_assistant'])
elif selected_tool == "AI Coding Mentor":
st.header("AI Coding Mentor")
with st.form(key="coding_form"):
code_input = st.text_area("Enter your code snippet", placeholder="e.g., def add(a, b): return a + b")
submit_button = st.form_submit_button("Review Code")
if submit_button:
review = ai_coding_mentor(code_input)
st.session_state['responses']['ai_coding_mentor'] = review
if st.session_state['responses']['ai_coding_mentor']:
display_response("ai_coding_mentor", st.session_state['responses']['ai_coding_mentor'])
elif selected_tool == "Smart Document Summarizer":
st.header("Smart Document Summarizer")
with st.form(key="document_form"):
document_input = st.text_area("Paste your document text", placeholder="e.g., In this paper, we explore the...")
submit_button = st.form_submit_button("Summarize Document")
if submit_button:
summary = smart_document_summarizer(document_input)
st.session_state['responses']['smart_document_summarizer'] = summary
if st.session_state['responses']['smart_document_summarizer']:
display_response("smart_document_summarizer", st.session_state['responses']['smart_document_summarizer'])
elif selected_tool == "Interactive Study Planner":
st.header("Interactive Study Planner")
with st.form(key="planner_form"):
schedule_input = st.text_input("Describe your exam schedule", placeholder="e.g., 3 exams next week")
submit_button = st.form_submit_button("Create Study Plan")
if submit_button:
plan = interactive_study_planner(schedule_input)
st.session_state['responses']['interactive_study_planner'] = plan
if st.session_state['responses']['interactive_study_planner']:
display_response("interactive_study_planner", st.session_state['responses']['interactive_study_planner'])
elif selected_tool == "Real-Time Q&A Support":
st.header("Real-Time Q&A Support")
with st.form(key="qa_form"):
question_input = st.text_input("Ask your question", placeholder="e.g., What is Newton's third law?")
submit_button = st.form_submit_button("Get Answer")
if submit_button:
answer = real_time_qa_support(question_input)
st.session_state['responses']['real_time_qa_support'] = answer
if st.session_state['responses']['real_time_qa_support']:
display_response("real_time_qa_support", st.session_state['responses']['real_time_qa_support'])
elif selected_tool == "Mental Health Check-In":
st.header("Mental Health Check-In")
with st.form(key="mental_health_form"):
feelings_input = st.text_area("Describe how you're feeling", placeholder="e.g., I'm feeling stressed about exams")
submit_button = st.form_submit_button("Get Support")
if submit_button:
advice = mental_health_check_in(feelings_input)
st.session_state['responses']['mental_health_check_in'] = advice
if st.session_state['responses']['mental_health_check_in']:
display_response("mental_health_check_in", st.session_state['responses']['mental_health_check_in'])
# Footer with social links
st.markdown("""
<div class="footer">
<a href="https://github.com/" target="_blank"><i class="fab fa-github"></i> GitHub</a>
<a href="https://linkedin.com/" target="_blank"><i class="fab fa-linkedin"></i> LinkedIn</a>
<a href="https://twitter.com/" target="_blank"><i class="fab fa-twitter"></i> Twitter</a>
</div>
""", unsafe_allow_html=True)
|