Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| import json | |
| import numpy as np | |
| from sentence_transformers import SentenceTransformer | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| import logging | |
| import time | |
| # Set up logging | |
| logging.basicConfig(level=logging.INFO) | |
| """ | |
| For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
| """ | |
| # Load embeddings from a JSON file | |
| def load_embeddings(file_path): | |
| logging.info(f"Loading embeddings from {file_path}") | |
| with open(file_path, 'r', encoding='utf-8') as file: | |
| embeddings = json.load(file) | |
| logging.info(f"Loaded {len(embeddings)} embeddings") | |
| return embeddings | |
| # Function to get relevant articles based on user query | |
| def get_relevant_documents(query, embeddings_data, model, top_k=3): | |
| logging.info(f"Received query: {query}") | |
| start_time = time.time() | |
| query_embedding = model.encode(query) | |
| similarities = [] | |
| for i, entry in enumerate(embeddings_data): | |
| embedding = np.array(entry['embedding']) | |
| similarity = cosine_similarity([query_embedding], [embedding])[0][0] | |
| similarities.append((entry, similarity)) | |
| if i % 100 == 0: # Log every 100 iterations | |
| logging.debug(f"Processed {i} embeddings") | |
| logging.info("Sorting similarities") | |
| similarities.sort(key=lambda x: x[1], reverse=True) | |
| top_entries = [entry for entry, _ in similarities[:top_k]] | |
| end_time = time.time() | |
| duration = end_time - start_time | |
| logging.info(f"Query processed in {duration:.2f} seconds") | |
| logging.info(f"Top {top_k} documents returned with similarities: {[sim[1] for sim in similarities[:top_k]]}") | |
| return top_entries | |
| # Function to format relevant documents into a string | |
| def format_documents(documents): | |
| logging.info(f"Formatting {len(documents)} documents") | |
| formatted = "" | |
| for doc in documents: | |
| formatted += f"Relevant article: {doc['name']}\n{doc['content']}\n\n" | |
| return formatted | |
| # Main chatbot function that integrates RAG | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| embeddings_data, | |
| tokenizer, | |
| model | |
| ): | |
| logging.info(f"New user query: {message}") | |
| start_time = time.time() | |
| # Search for relevant documents based on user input | |
| relevant_docs = get_relevant_documents(message, embeddings_data, tokenizer, model) | |
| retrieved_context = format_documents(relevant_docs) | |
| # Log the statistics about the retrieved documents | |
| logging.info(f"Total documents retrieved: {len(relevant_docs)}") | |
| logging.info(f"Documents: " + str([doc['name'] for doc in relevant_docs])) | |
| # Add the retrieved context as part of the system message | |
| system_message_with_context = system_message + "\n\n" + "Relevant documents:\n" + retrieved_context | |
| logging.info("System message updated with retrieved context") | |
| messages = [{"role": "system", "content": system_message_with_context}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| logging.info("Messages prepared for InferenceClient") | |
| client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
| logging.info("Sending request to InferenceClient") | |
| response = "" | |
| # Collect the full response instead of yielding each token | |
| for message in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| end_time = time.time() | |
| total_duration = end_time - start_time | |
| logging.info(f"Response generated in {total_duration:.2f} seconds") | |
| return response # Return the complete response as a string | |
| # Load embeddings and model once at startup | |
| embeddings_file = 'Code Civil vectorised.json' | |
| logging.info("Starting application, loading embeddings and model") | |
| embeddings_data = load_embeddings(embeddings_file) | |
| embedding_model = SentenceTransformer('Lajavaness/bilingual-embedding-small', trust_remote_code=True) | |
| logging.info("Model and embeddings loaded successfully") | |
| # Gradio interface | |
| demo = gr.ChatInterface( | |
| lambda message, history, system_message, max_tokens, temperature, top_p: respond( | |
| message, history, system_message, max_tokens, temperature, top_p, embeddings_data, embedding_model | |
| ), | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| logging.info("Launching Gradio app") | |
| demo.launch() | |