Text2Canvas / feature_to_sprite.py
Aditya Patkar
Added training files, enforced code formatting
c046d7f
from pathlib import Path
from types import SimpleNamespace
import torch
import torch.nn.functional as F
import wandb
import streamlit as st
from utilities import ContextUnet, setup_ddpm
from constants import WANDB_API_KEY
def load_model():
"""
This function loads the model from the model registry.
"""
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# login to wandb
# wandb.login(key=WANDB_API_KEY)
api = wandb.Api(api_key=WANDB_API_KEY)
artifact = api.artifact("teamaditya/model-registry/Feature2Sprite:v1", type="model")
model_path = Path(artifact.download())
# recover model info from the registry
producer_run = artifact.logged_by()
# load the weights dictionary
model_weights = torch.load(model_path / "context_model.pth", map_location="cpu")
# create the model
model = ContextUnet(
in_channels=3,
n_feat=producer_run.config["n_feat"],
n_cfeat=producer_run.config["n_cfeat"],
height=producer_run.config["height"],
)
# load the weights into the model
model.load_state_dict(model_weights)
# set the model to eval mode
model.eval()
return model.to(DEVICE)
def show_image(img):
"""
This function shows the image in the streamlit app.
"""
img = (img.permute(1, 2, 0).clip(-1, 1).detach().cpu().numpy() + 1) / 2
st.image(img, clamp=True)
return img
def generate_sprites(feature_vector):
"""
This function generates sprites from a given feature vector.
"""
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
config = SimpleNamespace(
# hyperparameters
num_samples=30,
# ddpm sampler hyperparameters
timesteps=500,
beta1=1e-4,
beta2=0.02,
# network hyperparameters
height=16,
)
nn_model = load_model()
_, sample_ddpm_context = setup_ddpm(
config.beta1, config.beta2, config.timesteps, DEVICE
)
noises = torch.randn(config.num_samples, 3, config.height, config.height).to(DEVICE)
feature_vector = torch.tensor([feature_vector]).to(DEVICE).float()
ddpm_samples, _ = sample_ddpm_context(nn_model, noises, feature_vector)
# upscale the 16*16 images to 256*256
ddpm_samples = F.interpolate(ddpm_samples, size=(256, 256), mode="bilinear")
# show the images
img = show_image(ddpm_samples[0])
return img