File size: 4,388 Bytes
757ed1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c52e2e
 
 
 
 
 
 
 
 
 
 
757ed1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdfffc9
 
 
 
757ed1c
 
 
 
 
 
5c52e2e
 
 
 
 
 
 
 
 
 
 
 
 
757ed1c
 
5c52e2e
 
757ed1c
 
5c52e2e
757ed1c
5c52e2e
757ed1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import utils.binvox_rw as binvox_rw
import numpy as np
import plotly.graph_objects as go
from models.encoder import Encoder
from models.decoder import Decoder
from models.merger import Merger
from models.refiner import Refiner
from config import cfg
import torch
from datetime import datetime as dt
import utils.data_transforms
device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
# device='cpu'

cfg.CONST.WEIGHTS='saved_model/Pix2Vox.pth'


def read_binvox(file) -> np.ndarray:
    model = binvox_rw.read_as_3d_array(file)
    return model.data.astype(np.uint8)


def voxel_to_plotly(voxels):
    x, y, z = voxels.nonzero()
    fig = go.Figure(data=[
        go.Scatter3d(
            x=x, y=y, z=z,
            mode='markers',
            marker=dict(size=3, color=z, colorscale='Viridis', opacity=0.7)
        )
    ])
    fig.update_layout(scene=dict(aspectmode='data'))
    return fig


# when gpu is not available
def remove_module_prefix(state_dict):
    new_state_dict = {}
    for k, v in state_dict.items():
        if k.startswith('module.'):
            new_state_dict[k[7:]] = v
        else:
            new_state_dict[k] = v
    return new_state_dict



IMG_SIZE = cfg.CONST.IMG_H, cfg.CONST.IMG_W
CROP_SIZE = cfg.CONST.CROP_IMG_H, cfg.CONST.CROP_IMG_W
test_transforms = utils.data_transforms.Compose([
    utils.data_transforms.CenterCrop(IMG_SIZE, CROP_SIZE),
    utils.data_transforms.RandomBackground(cfg.TEST.RANDOM_BG_COLOR_RANGE),
    utils.data_transforms.Normalize(mean=cfg.DATASET.MEAN, std=cfg.DATASET.STD),
    utils.data_transforms.ToTensor(),
])


def predict_voxel_from_images(rendering_images):
    transformed_images = test_transforms(rendering_images)

    encoder = Encoder(cfg)
    decoder = Decoder(cfg)
    refiner = Refiner(cfg)
    merger = Merger(cfg)


    print('[INFO] %s Loading weights from %s ...' % (dt.now(), cfg.CONST.WEIGHTS))
    checkpoint = torch.load(cfg.CONST.WEIGHTS, weights_only=False, map_location=device)


    if torch.cuda.is_available():
            encoder = torch.nn.DataParallel(encoder).cuda()
            decoder = torch.nn.DataParallel(decoder).cuda()
            refiner = torch.nn.DataParallel(refiner).cuda()
            merger = torch.nn.DataParallel(merger).cuda()

            encoder_state_dict=checkpoint['encoder_state_dict']
            decoder_state_dict=checkpoint['decoder_state_dict']
            merger_state_dict=checkpoint['merger_state_dict']
            refiner_state_dict = checkpoint['refiner_state_dict']

    else:
        encoder_state_dict = remove_module_prefix(checkpoint['encoder_state_dict'])
        decoder_state_dict = remove_module_prefix(checkpoint['decoder_state_dict'])
        merger_state_dict = remove_module_prefix(checkpoint['merger_state_dict'])
        refiner_state_dict = remove_module_prefix(checkpoint['refiner_state_dict'])




    epoch_idx = checkpoint['epoch_idx']
    encoder.load_state_dict(encoder_state_dict)
    decoder.load_state_dict(decoder_state_dict)

    if cfg.NETWORK.USE_REFINER:
            refiner.load_state_dict(refiner_state_dict)
    if cfg.NETWORK.USE_MERGER:
            merger.load_state_dict(merger_state_dict)


    encoder.eval()
    decoder.eval()
    merger.eval()
    refiner.eval()


    with torch.no_grad():

        transformed_images = transformed_images.unsqueeze(0) #adding the batch_dim
        transformed_images = transformed_images.to(device)

        # print(rendering_images.shape)
        image_features = encoder(transformed_images)
        print(image_features.shape)
        raw_features, generated_volume = decoder(image_features)
        print(generated_volume.shape)


        if cfg.NETWORK.USE_MERGER:
            generated_volume = merger(raw_features, generated_volume)
        else:
            generated_volume = torch.mean(generated_volume, dim=1)


        # encoder_loss = bce_loss(generated_volume, ground_truth_volume) * 10


        if cfg.NETWORK.USE_REFINER:
                generated_volume = refiner(generated_volume)
                # refiner_loss = bce_loss(generated_volume, ground_truth_volume) * 10
        else:
                # refiner_loss = encoder_loss
                pass


        generated_volume=generated_volume.squeeze(0)
        gv = generated_volume.cpu().numpy()
        gv = (gv >= 0.5).astype(np.uint8)




    torch.cuda.empty_cache()
    return gv