import gradio as gr from refacer import Refacer import argparse import os import requests import tempfile import shutil # Hugging Face URL to download the model model_url = "https://huggingface.co/ofter/4x-UltraSharp/resolve/main/inswapper_128.onnx" model_path = "/home/user/app/inswapper_128.onnx" # absolute path for the model in your environment # Function to download the model if not exists def download_model(): if not os.path.exists(model_path): print("Downloading the inswapper_128.onnx model...") response = requests.get(model_url) if response.status_code == 200: with open(model_path, 'wb') as f: f.write(response.content) print("Model downloaded successfully!") else: print(f"Error: Model download failed. Status code: {response.status_code}") else: print("Model already exists.") # Download the model when the script runs download_model() # Argument parser parser = argparse.ArgumentParser(description='Refacer') parser.add_argument("--max_num_faces", type=int, help="Max number of faces on UI", default=5) parser.add_argument("--force_cpu", help="Force CPU mode", default=False, action="store_true") parser.add_argument("--share_gradio", help="Share Gradio", default=False, action="store_true") parser.add_argument("--server_name", type=str, help="Server IP address", default="127.0.0.1") parser.add_argument("--server_port", type=int, help="Server port", default=7860) parser.add_argument("--colab_performance", help="Use in colab for better performance", default=False, action="store_true") args = parser.parse_args() # Initialize the Refacer class refacer = Refacer(force_cpu=args.force_cpu, colab_performance=args.colab_performance) num_faces = args.max_num_faces # Run function for refacing video def run(*vars): video_path = vars[0] origins = vars[1:(num_faces+1)] destinations = vars[(num_faces+1):(num_faces*2)+1] thresholds = vars[(num_faces*2)+1:] faces = [] for k in range(0, num_faces): if origins[k] is not None and destinations[k] is not None: faces.append({ 'origin': origins[k], 'destination': destinations[k], 'threshold': thresholds[k] }) # Call refacer to process video and get refaced video path refaced_video_path = refacer.reface(video_path, faces) # Get refaced video path print(f"Refaced video can be found at {refaced_video_path}") # Directly return the path to the Gradio UI without using ffmpeg or temp files return refaced_video_path # Gradio will handle the video display # Prepare Gradio components origin = [] destination = [] thresholds = [] with gr.Blocks() as demo: with gr.Row(): gr.Markdown("# Refacer") with gr.Row(): video = gr.Video(label="Original video", format="mp4") video2 = gr.Video(label="Refaced video", interactive=False, format="mp4") for i in range(0, num_faces): with gr.Tab(f"Face #{i+1}"): with gr.Row(): origin.append(gr.Image(label="Face to replace")) destination.append(gr.Image(label="Destination face")) with gr.Row(): thresholds.append(gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.2)) with gr.Row(): button = gr.Button("Reface", variant="primary") # Click event: Refacing the video and showing the refaced video in Gradio button.click(fn=run, inputs=[video] + origin + destination + thresholds, outputs=[video2]) # Launch the Gradio app demo.queue().launch(show_error=True, share=args.share_gradio, server_name="0.0.0.0", server_port=args.server_port)