import gradio as gr from refacer import Refacer import argparse import os import requests # Hugging Face URL to download the model model_url = "https://huggingface.co/ofter/4x-UltraSharp/resolve/main/inswapper_128.onnx" model_path = "./inswapper_128.onnx" # Function to download the model def download_model(): if not os.path.exists(model_path): print("Downloading inswapper_128.onnx...") response = requests.get(model_url) if response.status_code == 200: with open(model_path, 'wb') as f: f.write(response.content) print("Model downloaded successfully!") else: raise Exception(f"Failed to download the model. Status code: {response.status_code}") else: print("Model already exists.") # Download the model when the script runs download_model() # Argument parser parser = argparse.ArgumentParser(description='Refacer') parser.add_argument("--max_num_faces", type=int, help="Max number of faces on UI", default=5) parser.add_argument("--force_cpu", help="Force CPU mode", default=False, action="store_true") parser.add_argument("--share_gradio", help="Share Gradio", default=False, action="store_true") parser.add_argument("--server_name", type=str, help="Server IP address", default="127.0.0.1") parser.add_argument("--server_port", type=int, help="Server port", default=7860) parser.add_argument("--colab_performance", help="Use in colab for better performance", default=False, action="store_true") args = parser.parse_args() # Initialize the Refacer class refacer = Refacer(force_cpu=args.force_cpu, colab_performance=args.colab_performance) num_faces = args.max_num_faces # Function to process refacing def run(*vars): video_path = vars[0] # Original video path if not video_path: raise ValueError("Video file not found. Please upload a valid video.") origins = vars[1:(num_faces+1)] destinations = vars[(num_faces+1):(num_faces*2)+1] thresholds = vars[(num_faces*2)+1:] faces = [] for k in range(num_faces): if origins[k] and destinations[k]: faces.append({ 'origin': origins[k], 'destination': destinations[k], 'threshold': thresholds[k] }) try: # Call refacer to process video and return bytes refaced_video_path = refacer.reface(video_path, faces) with open(refaced_video_path, "rb") as f: video_bytes = f.read() # Cleanup temporary file os.remove(refaced_video_path) return video_bytes except Exception as e: print(f"Error during refacing: {e}") raise RuntimeError("Video refacing failed. Check logs.") # Prepare Gradio components origin = [] destination = [] thresholds = [] with gr.Blocks() as demo: with gr.Row(): gr.Markdown("# Refacer") with gr.Row(): video = gr.Video(label="Original Video", format="mp4") video2 = gr.Video(label="Refaced Video", interactive=False, format="mp4") for i in range(num_faces): with gr.Tab(f"Face #{i+1}"): with gr.Row(): origin.append(gr.Image(label="Face to Replace")) destination.append(gr.Image(label="Destination Face")) with gr.Row(): thresholds.append(gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.2)) with gr.Row(): button = gr.Button("Reface", variant="primary") # Configure button click button.click(fn=run, inputs=[video] + origin + destination + thresholds, outputs=[video2]) # Launch Gradio app demo.queue().launch(show_error=True, share=args.share_gradio, server_name="0.0.0.0", server_port=args.server_port)