Ii commited on
Commit
db0925b
·
verified ·
1 Parent(s): c76484c

Delete scrfd.py

Browse files
Files changed (1) hide show
  1. scrfd.py +0 -329
scrfd.py DELETED
@@ -1,329 +0,0 @@
1
-
2
- from __future__ import division
3
- import datetime
4
- import numpy as np
5
- #import onnx
6
- import onnxruntime
7
- import os
8
- import os.path as osp
9
- import cv2
10
- import sys
11
-
12
- def softmax(z):
13
- assert len(z.shape) == 2
14
- s = np.max(z, axis=1)
15
- s = s[:, np.newaxis] # necessary step to do broadcasting
16
- e_x = np.exp(z - s)
17
- div = np.sum(e_x, axis=1)
18
- div = div[:, np.newaxis] # dito
19
- return e_x / div
20
-
21
- def distance2bbox(points, distance, max_shape=None):
22
- """Decode distance prediction to bounding box.
23
-
24
- Args:
25
- points (Tensor): Shape (n, 2), [x, y].
26
- distance (Tensor): Distance from the given point to 4
27
- boundaries (left, top, right, bottom).
28
- max_shape (tuple): Shape of the image.
29
-
30
- Returns:
31
- Tensor: Decoded bboxes.
32
- """
33
- x1 = points[:, 0] - distance[:, 0]
34
- y1 = points[:, 1] - distance[:, 1]
35
- x2 = points[:, 0] + distance[:, 2]
36
- y2 = points[:, 1] + distance[:, 3]
37
- if max_shape is not None:
38
- x1 = x1.clamp(min=0, max=max_shape[1])
39
- y1 = y1.clamp(min=0, max=max_shape[0])
40
- x2 = x2.clamp(min=0, max=max_shape[1])
41
- y2 = y2.clamp(min=0, max=max_shape[0])
42
- return np.stack([x1, y1, x2, y2], axis=-1)
43
-
44
- def distance2kps(points, distance, max_shape=None):
45
- """Decode distance prediction to bounding box.
46
-
47
- Args:
48
- points (Tensor): Shape (n, 2), [x, y].
49
- distance (Tensor): Distance from the given point to 4
50
- boundaries (left, top, right, bottom).
51
- max_shape (tuple): Shape of the image.
52
-
53
- Returns:
54
- Tensor: Decoded bboxes.
55
- """
56
- preds = []
57
- for i in range(0, distance.shape[1], 2):
58
- px = points[:, i%2] + distance[:, i]
59
- py = points[:, i%2+1] + distance[:, i+1]
60
- if max_shape is not None:
61
- px = px.clamp(min=0, max=max_shape[1])
62
- py = py.clamp(min=0, max=max_shape[0])
63
- preds.append(px)
64
- preds.append(py)
65
- return np.stack(preds, axis=-1)
66
-
67
- class SCRFD:
68
- def __init__(self, model_file=None, session=None):
69
- import onnxruntime
70
- self.model_file = model_file
71
- self.session = session
72
- self.taskname = 'detection'
73
- self.batched = False
74
- if self.session is None:
75
- assert self.model_file is not None
76
- assert osp.exists(self.model_file)
77
- self.session = onnxruntime.InferenceSession(self.model_file, providers=['CoreMLExecutionProvider','CUDAExecutionProvider'])
78
- self.center_cache = {}
79
- self.nms_thresh = 0.4
80
- self.det_thresh = 0.5
81
- self._init_vars()
82
-
83
- def _init_vars(self):
84
- input_cfg = self.session.get_inputs()[0]
85
- input_shape = input_cfg.shape
86
- #print(input_shape)
87
- if isinstance(input_shape[2], str):
88
- self.input_size = None
89
- else:
90
- self.input_size = tuple(input_shape[2:4][::-1])
91
- #print('image_size:', self.image_size)
92
- input_name = input_cfg.name
93
- self.input_shape = input_shape
94
- outputs = self.session.get_outputs()
95
- if len(outputs[0].shape) == 3:
96
- self.batched = True
97
- output_names = []
98
- for o in outputs:
99
- output_names.append(o.name)
100
- self.input_name = input_name
101
- self.output_names = output_names
102
- self.input_mean = 127.5
103
- self.input_std = 128.0
104
- #print(self.output_names)
105
- #assert len(outputs)==10 or len(outputs)==15
106
- self.use_kps = False
107
- self._anchor_ratio = 1.0
108
- self._num_anchors = 1
109
- if len(outputs)==6:
110
- self.fmc = 3
111
- self._feat_stride_fpn = [8, 16, 32]
112
- self._num_anchors = 2
113
- elif len(outputs)==9:
114
- self.fmc = 3
115
- self._feat_stride_fpn = [8, 16, 32]
116
- self._num_anchors = 2
117
- self.use_kps = True
118
- elif len(outputs)==10:
119
- self.fmc = 5
120
- self._feat_stride_fpn = [8, 16, 32, 64, 128]
121
- self._num_anchors = 1
122
- elif len(outputs)==15:
123
- self.fmc = 5
124
- self._feat_stride_fpn = [8, 16, 32, 64, 128]
125
- self._num_anchors = 1
126
- self.use_kps = True
127
-
128
- def prepare(self, ctx_id, **kwargs):
129
- if ctx_id<0:
130
- self.session.set_providers(['CPUExecutionProvider'])
131
- nms_thresh = kwargs.get('nms_thresh', None)
132
- if nms_thresh is not None:
133
- self.nms_thresh = nms_thresh
134
- det_thresh = kwargs.get('det_thresh', None)
135
- if det_thresh is not None:
136
- self.det_thresh = det_thresh
137
- input_size = kwargs.get('input_size', None)
138
- if input_size is not None:
139
- if self.input_size is not None:
140
- print('warning: det_size is already set in scrfd model, ignore')
141
- else:
142
- self.input_size = input_size
143
-
144
- def forward(self, img, threshold):
145
- scores_list = []
146
- bboxes_list = []
147
- kpss_list = []
148
- input_size = tuple(img.shape[0:2][::-1])
149
- blob = cv2.dnn.blobFromImage(img, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
150
- net_outs = self.session.run(self.output_names, {self.input_name : blob})
151
-
152
- input_height = blob.shape[2]
153
- input_width = blob.shape[3]
154
- fmc = self.fmc
155
- for idx, stride in enumerate(self._feat_stride_fpn):
156
- # If model support batch dim, take first output
157
- if self.batched:
158
- scores = net_outs[idx][0]
159
- bbox_preds = net_outs[idx + fmc][0]
160
- bbox_preds = bbox_preds * stride
161
- if self.use_kps:
162
- kps_preds = net_outs[idx + fmc * 2][0] * stride
163
- # If model doesn't support batching take output as is
164
- else:
165
- scores = net_outs[idx]
166
- bbox_preds = net_outs[idx + fmc]
167
- bbox_preds = bbox_preds * stride
168
- if self.use_kps:
169
- kps_preds = net_outs[idx + fmc * 2] * stride
170
-
171
- height = input_height // stride
172
- width = input_width // stride
173
- K = height * width
174
- key = (height, width, stride)
175
- if key in self.center_cache:
176
- anchor_centers = self.center_cache[key]
177
- else:
178
- #solution-1, c style:
179
- #anchor_centers = np.zeros( (height, width, 2), dtype=np.float32 )
180
- #for i in range(height):
181
- # anchor_centers[i, :, 1] = i
182
- #for i in range(width):
183
- # anchor_centers[:, i, 0] = i
184
-
185
- #solution-2:
186
- #ax = np.arange(width, dtype=np.float32)
187
- #ay = np.arange(height, dtype=np.float32)
188
- #xv, yv = np.meshgrid(np.arange(width), np.arange(height))
189
- #anchor_centers = np.stack([xv, yv], axis=-1).astype(np.float32)
190
-
191
- #solution-3:
192
- anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32)
193
- #print(anchor_centers.shape)
194
-
195
- anchor_centers = (anchor_centers * stride).reshape( (-1, 2) )
196
- if self._num_anchors>1:
197
- anchor_centers = np.stack([anchor_centers]*self._num_anchors, axis=1).reshape( (-1,2) )
198
- if len(self.center_cache)<100:
199
- self.center_cache[key] = anchor_centers
200
-
201
- pos_inds = np.where(scores>=threshold)[0]
202
- bboxes = distance2bbox(anchor_centers, bbox_preds)
203
- pos_scores = scores[pos_inds]
204
- pos_bboxes = bboxes[pos_inds]
205
- scores_list.append(pos_scores)
206
- bboxes_list.append(pos_bboxes)
207
- if self.use_kps:
208
- kpss = distance2kps(anchor_centers, kps_preds)
209
- #kpss = kps_preds
210
- kpss = kpss.reshape( (kpss.shape[0], -1, 2) )
211
- pos_kpss = kpss[pos_inds]
212
- kpss_list.append(pos_kpss)
213
- return scores_list, bboxes_list, kpss_list
214
-
215
- def detect(self, img, input_size = None, thresh=None, max_num=0, metric='default'):
216
- assert input_size is not None or self.input_size is not None
217
- input_size = self.input_size if input_size is None else input_size
218
-
219
- im_ratio = float(img.shape[0]) / img.shape[1]
220
- model_ratio = float(input_size[1]) / input_size[0]
221
- if im_ratio>model_ratio:
222
- new_height = input_size[1]
223
- new_width = int(new_height / im_ratio)
224
- else:
225
- new_width = input_size[0]
226
- new_height = int(new_width * im_ratio)
227
- det_scale = float(new_height) / img.shape[0]
228
- resized_img = cv2.resize(img, (new_width, new_height))
229
- det_img = np.zeros( (input_size[1], input_size[0], 3), dtype=np.uint8 )
230
- det_img[:new_height, :new_width, :] = resized_img
231
- det_thresh = thresh if thresh is not None else self.det_thresh
232
-
233
- scores_list, bboxes_list, kpss_list = self.forward(det_img, det_thresh)
234
-
235
- scores = np.vstack(scores_list)
236
- scores_ravel = scores.ravel()
237
- order = scores_ravel.argsort()[::-1]
238
- bboxes = np.vstack(bboxes_list) / det_scale
239
- if self.use_kps:
240
- kpss = np.vstack(kpss_list) / det_scale
241
- pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False)
242
- pre_det = pre_det[order, :]
243
- keep = self.nms(pre_det)
244
- det = pre_det[keep, :]
245
- if self.use_kps:
246
- kpss = kpss[order,:,:]
247
- kpss = kpss[keep,:,:]
248
- else:
249
- kpss = None
250
- if max_num > 0 and det.shape[0] > max_num:
251
- area = (det[:, 2] - det[:, 0]) * (det[:, 3] -
252
- det[:, 1])
253
- img_center = img.shape[0] // 2, img.shape[1] // 2
254
- offsets = np.vstack([
255
- (det[:, 0] + det[:, 2]) / 2 - img_center[1],
256
- (det[:, 1] + det[:, 3]) / 2 - img_center[0]
257
- ])
258
- offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
259
- if metric=='max':
260
- values = area
261
- else:
262
- values = area - offset_dist_squared * 2.0 # some extra weight on the centering
263
- bindex = np.argsort(
264
- values)[::-1] # some extra weight on the centering
265
- bindex = bindex[0:max_num]
266
- det = det[bindex, :]
267
- if kpss is not None:
268
- kpss = kpss[bindex, :]
269
- return det, kpss
270
-
271
- def autodetect(self, img, max_num=0, metric='max'):
272
- bboxes, kpss = self.detect(img, input_size=(640, 640), thresh=0.5)
273
- bboxes2, kpss2 = self.detect(img, input_size=(128, 128), thresh=0.5)
274
- bboxes_all = np.concatenate([bboxes, bboxes2], axis=0)
275
- kpss_all = np.concatenate([kpss, kpss2], axis=0)
276
- keep = self.nms(bboxes_all)
277
- det = bboxes_all[keep,:]
278
- kpss = kpss_all[keep,:]
279
- if max_num > 0 and det.shape[0] > max_num:
280
- area = (det[:, 2] - det[:, 0]) * (det[:, 3] -
281
- det[:, 1])
282
- img_center = img.shape[0] // 2, img.shape[1] // 2
283
- offsets = np.vstack([
284
- (det[:, 0] + det[:, 2]) / 2 - img_center[1],
285
- (det[:, 1] + det[:, 3]) / 2 - img_center[0]
286
- ])
287
- offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
288
- if metric=='max':
289
- values = area
290
- else:
291
- values = area - offset_dist_squared * 2.0 # some extra weight on the centering
292
- bindex = np.argsort(
293
- values)[::-1] # some extra weight on the centering
294
- bindex = bindex[0:max_num]
295
- det = det[bindex, :]
296
- if kpss is not None:
297
- kpss = kpss[bindex, :]
298
- return det, kpss
299
-
300
- def nms(self, dets):
301
- thresh = self.nms_thresh
302
- x1 = dets[:, 0]
303
- y1 = dets[:, 1]
304
- x2 = dets[:, 2]
305
- y2 = dets[:, 3]
306
- scores = dets[:, 4]
307
-
308
- areas = (x2 - x1 + 1) * (y2 - y1 + 1)
309
- order = scores.argsort()[::-1]
310
-
311
- keep = []
312
- while order.size > 0:
313
- i = order[0]
314
- keep.append(i)
315
- xx1 = np.maximum(x1[i], x1[order[1:]])
316
- yy1 = np.maximum(y1[i], y1[order[1:]])
317
- xx2 = np.minimum(x2[i], x2[order[1:]])
318
- yy2 = np.minimum(y2[i], y2[order[1:]])
319
-
320
- w = np.maximum(0.0, xx2 - xx1 + 1)
321
- h = np.maximum(0.0, yy2 - yy1 + 1)
322
- inter = w * h
323
- ovr = inter / (areas[i] + areas[order[1:]] - inter)
324
-
325
- inds = np.where(ovr <= thresh)[0]
326
- order = order[inds + 1]
327
-
328
- return keep
329
-