Ii
commited on
Delete arcface_onnx.py.txt
Browse files- arcface_onnx.py.txt +0 -91
arcface_onnx.py.txt
DELETED
@@ -1,91 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
# @Organization : insightface.ai
|
3 |
-
# @Author : Jia Guo
|
4 |
-
# @Time : 2021-05-04
|
5 |
-
# @Function :
|
6 |
-
|
7 |
-
import numpy as np
|
8 |
-
import cv2
|
9 |
-
import onnx
|
10 |
-
import onnxruntime
|
11 |
-
import face_align
|
12 |
-
|
13 |
-
__all__ = [
|
14 |
-
'ArcFaceONNX',
|
15 |
-
]
|
16 |
-
|
17 |
-
|
18 |
-
class ArcFaceONNX:
|
19 |
-
def __init__(self, model_file=None, session=None):
|
20 |
-
assert model_file is not None
|
21 |
-
self.model_file = model_file
|
22 |
-
self.session = session
|
23 |
-
self.taskname = 'recognition'
|
24 |
-
find_sub = False
|
25 |
-
find_mul = False
|
26 |
-
model = onnx.load(self.model_file)
|
27 |
-
graph = model.graph
|
28 |
-
for nid, node in enumerate(graph.node[:8]):
|
29 |
-
#print(nid, node.name)
|
30 |
-
if node.name.startswith('Sub') or node.name.startswith('_minus'):
|
31 |
-
find_sub = True
|
32 |
-
if node.name.startswith('Mul') or node.name.startswith('_mul'):
|
33 |
-
find_mul = True
|
34 |
-
if find_sub and find_mul:
|
35 |
-
#mxnet arcface model
|
36 |
-
input_mean = 0.0
|
37 |
-
input_std = 1.0
|
38 |
-
else:
|
39 |
-
input_mean = 127.5
|
40 |
-
input_std = 127.5
|
41 |
-
self.input_mean = input_mean
|
42 |
-
self.input_std = input_std
|
43 |
-
#print('input mean and std:', self.input_mean, self.input_std)
|
44 |
-
if self.session is None:
|
45 |
-
self.session = onnxruntime.InferenceSession(self.model_file, providers=['CoreMLExecutionProvider','CUDAExecutionProvider'])
|
46 |
-
input_cfg = self.session.get_inputs()[0]
|
47 |
-
input_shape = input_cfg.shape
|
48 |
-
input_name = input_cfg.name
|
49 |
-
self.input_size = tuple(input_shape[2:4][::-1])
|
50 |
-
self.input_shape = input_shape
|
51 |
-
outputs = self.session.get_outputs()
|
52 |
-
output_names = []
|
53 |
-
for out in outputs:
|
54 |
-
output_names.append(out.name)
|
55 |
-
self.input_name = input_name
|
56 |
-
self.output_names = output_names
|
57 |
-
assert len(self.output_names)==1
|
58 |
-
self.output_shape = outputs[0].shape
|
59 |
-
|
60 |
-
def prepare(self, ctx_id, **kwargs):
|
61 |
-
if ctx_id<0:
|
62 |
-
self.session.set_providers(['CPUExecutionProvider'])
|
63 |
-
|
64 |
-
def get(self, img, kps):
|
65 |
-
aimg = face_align.norm_crop(img, landmark=kps, image_size=self.input_size[0])
|
66 |
-
embedding = self.get_feat(aimg).flatten()
|
67 |
-
return embedding
|
68 |
-
|
69 |
-
def compute_sim(self, feat1, feat2):
|
70 |
-
from numpy.linalg import norm
|
71 |
-
feat1 = feat1.ravel()
|
72 |
-
feat2 = feat2.ravel()
|
73 |
-
sim = np.dot(feat1, feat2) / (norm(feat1) * norm(feat2))
|
74 |
-
return sim
|
75 |
-
|
76 |
-
def get_feat(self, imgs):
|
77 |
-
if not isinstance(imgs, list):
|
78 |
-
imgs = [imgs]
|
79 |
-
input_size = self.input_size
|
80 |
-
|
81 |
-
blob = cv2.dnn.blobFromImages(imgs, 1.0 / self.input_std, input_size,
|
82 |
-
(self.input_mean, self.input_mean, self.input_mean), swapRB=True)
|
83 |
-
net_out = self.session.run(self.output_names, {self.input_name: blob})[0]
|
84 |
-
return net_out
|
85 |
-
|
86 |
-
def forward(self, batch_data):
|
87 |
-
blob = (batch_data - self.input_mean) / self.input_std
|
88 |
-
net_out = self.session.run(self.output_names, {self.input_name: blob})[0]
|
89 |
-
return net_out
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|