Refacer / refacer.py
Ii
Update refacer.py
e4977c0 verified
raw
history blame
3.63 kB
import cv2
import onnxruntime as rt
import sys
from insightface.app import FaceAnalysis
sys.path.insert(1, './recognition')
from scrfd import SCRFD
from arcface_onnx import ArcFaceONNX
import os.path as osp
import os
from pathlib import Path
from tqdm import tqdm
import ffmpeg
import random
import multiprocessing as mp
from concurrent.futures import ThreadPoolExecutor
from insightface.model_zoo.inswapper import INSwapper
import psutil
from enum import Enum
from insightface.app.common import Face
from insightface.utils.storage import ensure_available
import re
import subprocess
class RefacerMode(Enum):
CPU, CUDA, COREML, TENSORRT = range(1, 5)
class Refacer:
def __init__(self,force_cpu=False,colab_performance=False):
self.first_face = False
self.force_cpu = force_cpu
self.colab_performance = colab_performance
self.__check_encoders()
self.__check_providers()
self.total_mem = psutil.virtual_memory().total
self.__init_apps()
def __check_providers(self):
if self.force_cpu :
self.providers = ['CPUExecutionProvider']
else:
self.providers = rt.get_available_providers()
rt.set_default_logger_severity(4)
self.sess_options = rt.SessionOptions()
self.sess_options.execution_mode = rt.ExecutionMode.ORT_SEQUENTIAL
self.sess_options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL
if len(self.providers) == 1 and 'CPUExecutionProvider' in self.providers:
self.mode = RefacerMode.CPU
self.use_num_cpus = mp.cpu_count()-1
self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
print(f"CPU mode with providers {self.providers}")
elif self.colab_performance:
self.mode = RefacerMode.TENSORRT
self.use_num_cpus = mp.cpu_count()-1
self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
print(f"TENSORRT mode with providers {self.providers}")
elif 'CoreMLExecutionProvider' in self.providers:
self.mode = RefacerMode.COREML
self.use_num_cpus = mp.cpu_count()-1
self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
print(f"CoreML mode with providers {self.providers}")
elif 'CUDAExecutionProvider' in self.providers:
self.mode = RefacerMode.CUDA
self.use_num_cpus = 2
self.sess_options.intra_op_num_threads = 1
if 'TensorrtExecutionProvider' in self.providers:
self.providers.remove('TensorrtExecutionProvider')
print(f"CUDA mode with providers {self.providers}")
def __init_apps(self):
assets_dir = ensure_available('models', 'buffalo_l', root='~/.insightface')
model_path = os.path.join(assets_dir, 'det_10g.onnx')
sess_face = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
self.face_detector = SCRFD(model_path,sess_face)
self.face_detector.prepare(0,input_size=(640, 640))
model_path = os.path.join(assets_dir , 'w600k_r50.onnx')
sess_rec = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
self.rec_app = ArcFaceONNX(model_path,sess_rec)
self.rec_app.prepare(0)
model_path = 'inswapper_128.onnx'
sess_swap = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
self.face_swapper = INSwapper(model_path,sess_swap)
# மேலும் தேவையான முறைமைகள்...