Refacer / refacer.py
Ii
Update refacer.py
9216db1 verified
raw
history blame
8.66 kB
import io
import gradio as gr
import cv2
import onnxruntime as rt
import sys
from insightface.app import FaceAnalysis
sys.path.insert(1, './recognition')
from scrfd import SCRFD
from arcface_onnx import ArcFaceONNX
import os.path as osp
import os
from pathlib import Path
from tqdm import tqdm
import ffmpeg
import random
import multiprocessing as mp
from concurrent.futures import ThreadPoolExecutor
from insightface.model_zoo.inswapper import INSwapper
import psutil
from enum import Enum
from insightface.app.common import Face
from insightface.utils.storage import ensure_available
import re
import subprocess
class RefacerMode(Enum):
CPU, CUDA, COREML, TENSORRT = range(1, 5)
class Refacer:
def __init__(self, force_cpu=False, colab_performance=False):
self.first_face = False
self.force_cpu = force_cpu
self.colab_performance = colab_performance
self.__check_providers()
self.total_mem = psutil.virtual_memory().total
self.__init_apps()
def __check_providers(self):
if self.force_cpu:
self.providers = ['CPUExecutionProvider']
else:
self.providers = rt.get_available_providers()
rt.set_default_logger_severity(4)
self.sess_options = rt.SessionOptions()
self.sess_options.execution_mode = rt.ExecutionMode.ORT_SEQUENTIAL
self.sess_options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL
if len(self.providers) == 1 and 'CPUExecutionProvider' in self.providers:
self.mode = RefacerMode.CPU
self.use_num_cpus = mp.cpu_count() - 1
self.sess_options.intra_op_num_threads = int(self.use_num_cpus / 3)
print(f"CPU mode with providers {self.providers}")
elif self.colab_performance:
self.mode = RefacerMode.TENSORRT
self.use_num_cpus = mp.cpu_count() - 1
self.sess_options.intra_op_num_threads = int(self.use_num_cpus / 3)
print(f"TENSORRT mode with providers {self.providers}")
elif 'CoreMLExecutionProvider' in self.providers:
self.mode = RefacerMode.COREML
self.use_num_cpus = mp.cpu_count() - 1
self.sess_options.intra_op_num_threads = int(self.use_num_cpus / 3)
print(f"CoreML mode with providers {self.providers}")
elif 'CUDAExecutionProvider' in self.providers:
self.mode = RefacerMode.CUDA
self.use_num_cpus = 2
self.sess_options.intra_op_num_threads = 1
if 'TensorrtExecutionProvider' in the providers:
self.providers.remove('TensorrtExecutionProvider')
print(f"CUDA mode with providers {self.providers}")
def __init_apps(self):
assets_dir = ensure_available('models', 'buffalo_l', root='~/.insightface')
model_path = os.path.join(assets_dir, 'det_10g.onnx')
sess_face = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
self.face_detector = SCRFD(model_path, sess_face)
self.face_detector.prepare(0, input_size=(640, 640))
model_path = os.path.join(assets_dir, 'w600k_r50.onnx')
sess_rec = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
self.rec_app = ArcFaceONNX(model_path, sess_rec)
self.rec_app.prepare(0)
model_path = 'inswapper_128.onnx'
sess_swap = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
self.face_swapper = INSwapper(model_path, sess_swap)
def prepare_faces(self, faces):
self.replacement_faces = []
for face in faces:
if "origin" in face:
face_threshold = face['threshold']
bboxes1, kpss1 = self.face_detector.autodetect(face['origin'], max_num=1)
if len(kpss1) < 1:
raise Exception('No face detected on "Face to replace" image')
feat_original = self.rec_app.get(face['origin'], kpss1[0])
else:
face_threshold = 0
self.first_face = True
feat_original = None
print('No origin image: First face change')
_faces = self.__get_faces(face['destination'], max_num=1)
if len(_faces) < 1:
raise Exception('No face detected on "Destination face" image')
self.replacement_faces.append((feat_original, _faces[0], face_threshold))
def __get_faces(self, frame, max_num=0):
bboxes, kpss = self.face_detector.detect(frame, max_num=max_num, metric='default')
if bboxes.shape[0] == 0:
return []
ret = []
for i in range(bboxes.shape[0]):
bbox = bboxes[i, 0:4]
det_score = bboxes[i, 4]
kps = None
if kpss is not None:
kps = kpss[i]
face = Face(bbox=bbox, kps=kps, det_score=det_score)
face.embedding = self.rec_app.get(frame, kps)
ret.append(face)
return ret
def process_first_face(self, frame):
faces = self.__get_faces(frame, max_num=1)
if len(faces) != 0:
frame = self.face_swapper.get(frame, faces[0], self.replacement_faces[0][1], paste_back=True)
return frame
def process_faces(self, frame):
faces = self.__get_faces(frame, max_num=0)
for rep_face in self.replacement_faces:
for i in range(len(faces) - 1, -1, -1):
sim = self.rec_app.compute_sim(rep_face[0], faces[i].embedding)
if sim >= rep_face[2]:
frame = self.face_swapper.get(frame, faces[i], rep_face[1], paste_back=True)
del faces[i]
break
return frame
def __check_video_has_audio(self, video_path):
self.video_has_audio = False
probe = ffmpeg.probe(video_path)
audio_stream = next((stream for stream in probe['streams'] if stream['codec_type'] == 'audio'), None)
if audio_stream is not None:
self.video_has_audio = True
def reface_group(self, faces, frames):
results = []
with ThreadPoolExecutor(max_workers=self.use_num_cpus) as executor:
if self.first_face:
results = list(tqdm(executor.map(self.process_first_face, frames), total=len(frames), desc="Processing frames"))
else:
results = list(tqdm(executor.map(self.process_faces, frames), total=len(frames), desc="Processing frames"))
return results
def reface(self, video_path, faces):
self.__check_video_has_audio(video_path)
self.prepare_faces(faces)
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
print(f"Total frames: {total_frames}")
fps = cap.get(cv2.CAP_PROP_FPS)
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
frames = []
with tqdm(total=total_frames, desc="Extracting frames") as pbar:
while cap.isOpened():
flag, frame = cap.read()
if flag and len(frame) > 0:
frames.append(frame.copy())
pbar.update()
else:
break
cap.release()
pbar.close()
refaced_frames = self.reface_group(faces, frames)
video_buffer = io.BytesIO()
out = cv2.VideoWriter('temp.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_width, frame_height))
for frame in refaced_frames:
out.write(frame)
out.release()
with open('temp.mp4', 'rb') as f:
video_buffer.write(f.read())
video_buffer.seek(0)
os.remove('temp.mp4')
return video_buffer
# Gradio Code
def run(*vars):
video_path = vars[0]
origins = vars[1:(num_faces + 1)]
destinations = vars[(num_faces + 1):(num_faces * 2) + 1]
thresholds = vars[(num_faces * 2) + 1:]
faces = []
for k in range(0, num_faces):
if origins[k] is not None and destinations[k] is not None:
faces.append({
'origin': origins[k],
'destination[_{{{CITATION{{{_1{](https://github.com/qixinbo/OneButtonDeepLearning/tree/6e209f40102a7acaeb5d5798da013758c0ff9cd3/FaceSwap%2Fmenus%2FFaceSwap%2Finsightface_func%2Finsightface%2Fapp%2Fface_analysis.py)[_{{{CITATION{{{_2{](https://github.com/pgtinsley/arcface_aman/tree/7beda0d69dc40acc0138525ca84f50ecda126d8c/python-package%2Finsightface%2Fapp%2Fface_analysis.py)