import gradio as gr from groq import Groq import os import time import whisper from gtts import gTTS api_key = os.getenv('GROQ_API_KEY') # Initialize Groq client client = Groq(api_key=api_key) # Load Whisper model whisper_model = whisper.load_model("base") # You can use "tiny", "base", "small", "medium", or "large" # Function to convert audio to text def audio_to_text(audio_file): # Use Whisper to transcribe audio result = whisper_model.transcribe(audio_file) return result['text'] # Function to convert text to audio def text_to_audio(text): tts = gTTS(text) audio_file = "output_audio.mp3" tts.save(audio_file) return audio_file # Function to generate responses with error handling def generate_response(user_input, chat_history: list): try: # Prepare messages with chat history messages = [{"role": "system", "content": "You are a mental health assistant. Your responses should be empathetic, non-judgmental, and provide helpful advice based on mental health principles. Always encourage seeking professional help when needed. Your responses should look human as well."}] # Iterate through chat history and add user and assistant messages for message in chat_history: # Ensure that each message contains only 'role' and 'content' keys if 'role' in message and 'content' in message: messages.append({"role": message["role"], "content": message["content"]}) else: print(f"Skipping invalid message: {message}") messages.append({"role": "user", "content": user_input}) # Add the current user message # Call Groq API to get a response from LLaMA chat_completion = client.chat.completions.create( messages=messages, model='llama-3.1-70b-versatile' ) # Extract response response = chat_completion.choices[0].message.content return response, chat_history # Ensure you return both response and chat_history except Exception as e: print(f"Error occurred: {e}") # Print error to console for debugging return "An error occurred while generating the response. Please try again.", chat_history def gradio_interface(): with gr.Blocks() as demo: # Initialize chat history chat_history = [] # Create input components gr.Markdown("## A Mental Health Chatbot") chatbot = gr.Chatbot(type="messages") msg = gr.Textbox(placeholder="Type your message here...") audio_input = gr.Audio(type="filepath", label="Speak your message") clear = gr.Button("Clear") # User message submission function def user(user_message, history: list): history.append({"role": "user", "content": user_message}) return "", history def bot(history: list): if len(history) > 0: user_input = history[-1]["content"] response, updated_history = generate_response(user_input, history) history = updated_history history.append({"role": "assistant", "content": ""}) for character in response: history[-1]['content'] += character time.sleep(0.02) yield history # Speech-to-text processing def process_audio(audio_file, history): if audio_file: transcription = audio_to_text(audio_file) # Convert audio to text if transcription: history.append({"role": "user", "content": transcription}) else: history.append({"role": "assistant", "content": "I couldn't understand your audio. Please try again."}) return history # Set up interaction flow: msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(bot, chatbot, chatbot) audio_input.change(process_audio, [audio_input, chatbot], chatbot).then(bot, chatbot, chatbot) # Ensure bot is triggered clear.click(lambda: [], None, chatbot, queue=False) demo.launch() # Run the interface gradio_interface()