from fastai.vision.all import * import gradio as gr categories = 'Giant panda', 'Red panda' def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) learn = load_learner('model.pkl') image = gr.Image(height=192, width=192) label = gr.Label() examples = ['giant_0.jpg', 'red_0.jpg', 'giant_1.jpg', 'red_1.jpg'] interface = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) interface.launch(inline=False, share=True)