import os import gradio as gr import argparse from functools import partial from string import Template from utils import load_prompt, setup_gemini_client def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--ai-studio-api-key", type=str, default=os.getenv("GEMINI_API_KEY")) parser.add_argument("--vertexai", action="store_true", default=False) parser.add_argument("--vertexai-project", type=str, default="gcp-ml-172005") parser.add_argument("--vertexai-location", type=str, default="us-central1") parser.add_argument("--model", type=str, default="gemini-1.5-flash") parser.add_argument("--prompt-tmpl-path", type=str, default="configs/prompts.toml") parser.add_argument("--css-path", type=str, default="statics/styles.css") args = parser.parse_args() return args def find_attached_file(filename, attached_files): for file in attached_files: if file['name'] == filename: return file return None def echo(message, history, state): summary = "" attached_file = None if message['files']: path_local = message['files'][0] filename = os.path.basename(path_local) attached_file = find_attached_file(filename, state["attached_files"]) if attached_file is None: path_gcp = client.files.upload(path=path_local) state["attached_files"].append({ "name": filename, "path_local": path_local, "gcp_entity": path_gcp, "path_gcp": path_gcp.name, "mime_type=": path_gcp.mime_type, "expiration_time": path_gcp.expiration_time, }) attached_file = path_gcp # [{'role': 'user', 'metadata': None, 'content': 'asdf', 'options': None}, {'role': 'assistant', 'metadata': None, 'content': 'asdf', 'options': None}] user_message = [message['text']] if attached_file: user_message.append(attached_file) chat_history = state['messages'] chat_history = chat_history + user_message state['messages'] = chat_history response = client.models.generate_content( model="gemini-1.5-flash", contents=state['messages'] ) # make summary if state['summary'] == "": state['summary'] = response.text else: response = client.models.generate_content( model="gemini-1.5-flash", contents=[ Template( prompt_tmpl['summarization']['prompt'] ).safe_substitute( previous_summary=state['summary'], latest_conversation=str({"user": message['text'], "assistant": response.text}) ) ] ) state['summary'] = response.text return response.text, state, state['summary'] def main(args): style_css = open(args.css_path, "r").read() global client, prompt_tmpl client = setup_gemini_client(args) prompt_tmpl = load_prompt(args) ## Gradio Blocks with gr.Blocks(css=style_css) as demo: # State per session state = gr.State({ "messages": [], "attached_files": [], "summary": "" }) gr.Markdown("# Adaptive Summarization") gr.Markdown("AdaptSum stands for Adaptive Summarization. This project focuses on developing an LLM-powered system for dynamic summarization. Instead of generating entirely new summaries with each update, the system intelligently identifies and modifies only the necessary parts of the existing summary. This approach aims to create a more efficient and fluid summarization process within a continuous chat interaction with an LLM.") with gr.Row(elem_id="chat-interface"): with gr.Column(scale=3, elem_id="summary-window"): summary = gr.Markdown(label="Summary so far") with gr.Column(scale=7): gr.ChatInterface( multimodal=True, type="messages", fn=echo, additional_inputs=[state], additional_outputs=[state, summary], ) return demo if __name__ == "__main__": args = parse_args() demo = main(args) demo.launch()