Merge branch 'main' of https://huggingface.co/spaces/adannaned/Hate_speech_detection_system
Browse files- app.py +52 -59
- requirements.txt +7 -1
app.py
CHANGED
@@ -1,63 +1,56 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
)
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import DistilBertForSequenceClassification, DistilBertTokenizer
|
4 |
+
|
5 |
+
# Load the trained model and tokenizer
|
6 |
+
model = DistilBertForSequenceClassification.from_pretrained('best_model')
|
7 |
+
tokenizer = DistilBertTokenizer.from_pretrained('best_model')
|
8 |
+
|
9 |
+
|
10 |
+
# Define the prediction function
|
11 |
+
def predict_hate_speech(text):
|
12 |
+
inputs = tokenizer.encode_plus(
|
13 |
+
text,
|
14 |
+
add_special_tokens=True,
|
15 |
+
max_length=512,
|
16 |
+
padding='max_length',
|
17 |
+
truncation=True,
|
18 |
+
return_tensors='pt'
|
19 |
+
)
|
20 |
+
|
21 |
+
input_ids = inputs['input_ids']
|
22 |
+
attention_mask = inputs['attention_mask']
|
23 |
+
|
24 |
+
with torch.no_grad():
|
25 |
+
outputs = model(input_ids, attention_mask=attention_mask)
|
26 |
+
logits = outputs.logits
|
27 |
+
probabilities = torch.nn.functional.softmax(logits, dim=-1)
|
28 |
+
prediction = torch.argmax(probabilities, dim=1).item()
|
29 |
+
|
30 |
+
labels = {0: 'Neutral', 1: 'Offensive', 2: 'Hateful'}
|
31 |
+
predicted_label = labels[prediction]
|
32 |
+
confidence_scores = {labels[i]: prob for i, prob in enumerate(probabilities[0].tolist())}
|
33 |
+
|
34 |
+
return predicted_label, confidence_scores
|
35 |
+
|
36 |
+
# Define the Gradio interface
|
37 |
+
interface = gr.Interface(
|
38 |
+
fn=predict_hate_speech,
|
39 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter text here..."),
|
40 |
+
outputs=[
|
41 |
+
gr.Textbox(label="Prediction"),
|
42 |
+
gr.Label(label="Confidence Scores")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
],
|
44 |
+
title="Hate Speech Detection System using a Deep Active Learning Approach",
|
45 |
+
description="Enter a text to predict whether it is Neutral, Offensive, or Hateful.",
|
46 |
+
examples=[
|
47 |
+
["I love this product!"],
|
48 |
+
["You are so stupid!"],
|
49 |
+
["I hate this!"]
|
50 |
+
],
|
51 |
+
allow_flagging="manual",
|
52 |
+
flagging_dir="flagged_data"
|
53 |
)
|
54 |
|
55 |
+
# Launch the interface
|
56 |
+
interface.launch()
|
|
requirements.txt
CHANGED
@@ -1 +1,7 @@
|
|
1 |
-
huggingface_hub==0.22.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.22.2
|
2 |
+
torch
|
3 |
+
gradio
|
4 |
+
transformers
|
5 |
+
numpy
|
6 |
+
pandas
|
7 |
+
scikit-learn
|