adannaned commited on
Commit
378a259
·
verified ·
1 Parent(s): f66f36e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -59
app.py CHANGED
@@ -1,63 +1,56 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
  ],
 
 
 
 
 
 
 
 
 
59
  )
60
 
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ from transformers import DistilBertForSequenceClassification, DistilBertTokenizer
4
+
5
+ # Load the trained model and tokenizer
6
+ model = DistilBertForSequenceClassification.from_pretrained('best_model')
7
+ tokenizer = DistilBertTokenizer.from_pretrained('best_model')
8
+
9
+
10
+ # Define the prediction function
11
+ def predict_hate_speech(text):
12
+ inputs = tokenizer.encode_plus(
13
+ text,
14
+ add_special_tokens=True,
15
+ max_length=512,
16
+ padding='max_length',
17
+ truncation=True,
18
+ return_tensors='pt'
19
+ )
20
+
21
+ input_ids = inputs['input_ids']
22
+ attention_mask = inputs['attention_mask']
23
+
24
+ with torch.no_grad():
25
+ outputs = model(input_ids, attention_mask=attention_mask)
26
+ logits = outputs.logits
27
+ probabilities = torch.nn.functional.softmax(logits, dim=-1)
28
+ prediction = torch.argmax(probabilities, dim=1).item()
29
+
30
+ labels = {0: 'Neutral', 1: 'Offensive', 2: 'Hateful'}
31
+ predicted_label = labels[prediction]
32
+ confidence_scores = {labels[i]: prob for i, prob in enumerate(probabilities[0].tolist())}
33
+
34
+ return predicted_label, confidence_scores
35
+
36
+ # Define the Gradio interface
37
+ interface = gr.Interface(
38
+ fn=predict_hate_speech,
39
+ inputs=gr.Textbox(lines=2, placeholder="Enter text here..."),
40
+ outputs=[
41
+ gr.Textbox(label="Prediction"),
42
+ gr.Label(label="Confidence Scores")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  ],
44
+ title="Hate Speech Detection System using a Deep Active Learning Approach",
45
+ description="Enter a text to predict whether it is Neutral, Offensive, or Hateful.",
46
+ examples=[
47
+ ["I love this product!"],
48
+ ["You are so stupid!"],
49
+ ["I hate this!"]
50
+ ],
51
+ allow_flagging="manual",
52
+ flagging_dir="flagged_data"
53
  )
54
 
55
+ # Launch the interface
56
+ interface.launch()