File size: 1,803 Bytes
2c5ad51
 
 
 
 
 
 
 
 
 
 
85f5ce5
2c5ad51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# 1. Import required packages
import torch
import gradio as gr

from typing import Dict
from transformers import pipeline

# 2. Define our function to use with our model.
def food_not_food_classifier(text: str) -> Dict[str, float]:
  # 2. Setup food not food text classifier
  food_not_food_classifier_pipeline = pipeline(task="text-classification",
                                      model="adamNLP/learn_hf_food_not_food_text_classifier-distilbert-base-uncased",
                                      batch_size=32,
                                      device="cuda" if torch.cuda.is_available() else "cpu",
                                      top_k=None) # top_k=None => return all possible labels
  # 3. get outputs from pipeline
  outputs = food_not_food_classifier_pipeline(text)[0]

  # 4. Format output for Gradio
  output_dict = {}
  for item in outputs:
    output_dict[item["label"]] = item["score"]

  return output_dict

# 3. Create a Gradio interface -- we can use markdown text to create a description field
description = """
A text classifier to determine if a sentence is about food or not food.

Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) a [dataset of LLM generated food/not_food image captions](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions)
"""

## create demo
demo = gr.Interface(
    fn=food_not_food_classifier,
    inputs="text",
    outputs=gr.Label(num_top_classes=2),
    title="πŸ•πŸš«πŸ₯‘ Food or Not Food Text Classifier",
    description=description,
    examples=[["I whipped up a fresh batch of code, but it seems to have syntax error"],
              ["A plate of waffles and bluberry syrup"]]
)
# 4. Launch interface -- def Main function
if __name__ == "__main__":
  demo.launch()