Spaces:
Running
Running
initial commit
Browse files- .gitignore +4 -0
- agent.py +199 -0
- app.py +19 -0
- requirements.txt +6 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
.vscode
|
3 |
+
*.ipynb
|
4 |
+
notes.txt
|
agent.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
2 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
3 |
+
import requests
|
4 |
+
import os
|
5 |
+
from typing import List, TypedDict
|
6 |
+
from langgraph.types import Command
|
7 |
+
from typing import Literal, List
|
8 |
+
from langgraph.graph import StateGraph, START, END
|
9 |
+
import boto3
|
10 |
+
|
11 |
+
import streamlit as st
|
12 |
+
|
13 |
+
ssm = boto3.client(
|
14 |
+
'ssm',
|
15 |
+
region_name="us-east-2",
|
16 |
+
# aws_access_key_id=os.environ['AWS_ACCESS_KEY'],
|
17 |
+
# aws_secret_access_key=os.environ['AWS_SECRET_ACCESS_KEY']
|
18 |
+
)
|
19 |
+
|
20 |
+
os.environ['TAVILY_API_KEY'] = ssm.get_parameter(Name="TAVILY_API_KEY", WithDecryption=True)['Parameter']['Value']
|
21 |
+
|
22 |
+
def get_platform_tips(state) -> Command[Literal['web_search']]:
|
23 |
+
"""Conduct a web search to find up-to-date information on how to write an effective post for the provided platform."""
|
24 |
+
tavily_tool=TavilySearchResults(max_results=5)
|
25 |
+
tavily_output = tavily_tool.invoke(f"tips on how to write an effective post on {state['platform']}")
|
26 |
+
prompt = f"""
|
27 |
+
Summarize the tips provided in {tavily_output}. These tips will be used to generate a {state['platform']} post
|
28 |
+
Output as plain text.
|
29 |
+
"""
|
30 |
+
response = model.invoke(prompt).content
|
31 |
+
return Command(update={"tips": response}, goto="web_search")
|
32 |
+
|
33 |
+
def web_search(state) -> Command[Literal['generate_post']]:
|
34 |
+
"""Conduct a web search to find up-to-date information about a provided topic to be used for a social media post."""
|
35 |
+
tavily_tool=TavilySearchResults(max_results=5)
|
36 |
+
response = tavily_tool.invoke(state["topic"])
|
37 |
+
return Command(update={"tavily_results": response}, goto="generate_post")
|
38 |
+
|
39 |
+
def generate_social_media_post(state) -> Command[Literal["evaluate_engagement"]]:
|
40 |
+
"""Generate a social media post for a B2B bank."""
|
41 |
+
prompt = f"""
|
42 |
+
You are a social media strategist for a B2B bank. Generate a {state["platform"]} post.
|
43 |
+
The post should:
|
44 |
+
- Be engaging but professional.
|
45 |
+
- Provide value to corporate clients.
|
46 |
+
- Focus on {state["topic"]}.
|
47 |
+
- Incorporate information from {state["tavily_results"]}
|
48 |
+
|
49 |
+
Output as plain text.
|
50 |
+
"""
|
51 |
+
response = model.invoke(prompt)
|
52 |
+
return Command(update={"post": response.content}, goto="evaluate_engagement")
|
53 |
+
|
54 |
+
def evaluate_engagement(state) -> Command[Literal["evaluate_tone"]]:
|
55 |
+
"""Assess how engaging the post is for LinkedIn/Instagram."""
|
56 |
+
prompt = f"""
|
57 |
+
Score the following post on engagement (1-10) basd on the provided social media platform.
|
58 |
+
Consider clarity, readability, and compelling call-to-action.
|
59 |
+
|
60 |
+
Platform: {state["platform"]}
|
61 |
+
Post: {state["post"]}
|
62 |
+
|
63 |
+
Respond with just a number.
|
64 |
+
"""
|
65 |
+
score = model.invoke(prompt)
|
66 |
+
return Command(update={"engagement_score": score.content}, goto="evaluate_tone")
|
67 |
+
|
68 |
+
def evaluate_tone(state) -> Command[Literal["evaluate_clarity"]]:
|
69 |
+
"""Check if the post maintains a professional yet engaging tone."""
|
70 |
+
prompt = f"""
|
71 |
+
Score the post’s tone (1-10). Ensure it's:
|
72 |
+
- Professional but not too rigid.
|
73 |
+
- Trustworthy and aligned with B2B financial services.
|
74 |
+
- Aligns with the specified platform.
|
75 |
+
|
76 |
+
Platform: {state["platform"]}
|
77 |
+
Post: {state["post"]}
|
78 |
+
|
79 |
+
Respond with just a number.
|
80 |
+
"""
|
81 |
+
score = model.invoke(prompt)
|
82 |
+
return Command(update={"tone_score": score.content}, goto="evaluate_clarity")
|
83 |
+
|
84 |
+
def evaluate_clarity(state) -> Command[Literal["revise_if_needed"]]:
|
85 |
+
"""Ensure the post is clear and not overly technical."""
|
86 |
+
prompt = f"""
|
87 |
+
Score the post on clarity (1-10).
|
88 |
+
- Avoids jargon.
|
89 |
+
- Easy to read for busy corporate professionals.
|
90 |
+
- Appropriate for the social media platform.
|
91 |
+
|
92 |
+
Platform: {state["platform"]}
|
93 |
+
Post: {state["post"]}
|
94 |
+
|
95 |
+
Respond with just a number.
|
96 |
+
"""
|
97 |
+
score = model.invoke(prompt)
|
98 |
+
return Command(update={"clarity_score": score.content}, goto="revise_if_needed")
|
99 |
+
|
100 |
+
def revise_if_needed(state) -> Command[Literal["get_image"]]:
|
101 |
+
"""Revise post if average evaluation score is below a threshold."""
|
102 |
+
scores = [int(state["engagement_score"]), int(state["tone_score"]), int(state["clarity_score"])]
|
103 |
+
avg_score = sum(scores) / len(scores)
|
104 |
+
|
105 |
+
if avg_score < 7: # Arbitrary threshold for revision
|
106 |
+
prompt = f"""
|
107 |
+
Revise this post to improve clarity, engagement, and tone:
|
108 |
+
|
109 |
+
{state["post"]}
|
110 |
+
|
111 |
+
Improve based on the following scores:
|
112 |
+
Engagement: {state["engagement_score"]}
|
113 |
+
Tone: {state["tone_score"]}
|
114 |
+
Clarity: {state["clarity_score"]}
|
115 |
+
"""
|
116 |
+
revised_post = model.invoke(prompt)
|
117 |
+
return Command(update={"post": revised_post.content}, goto="get_image")
|
118 |
+
|
119 |
+
return Command(goto="get_image")
|
120 |
+
|
121 |
+
def fetch_image(state) -> Command[Literal[END]]:
|
122 |
+
"""Fetch an image from Unsplash based on the provided text."""
|
123 |
+
prompt = f"""
|
124 |
+
You are a search optimization assistant. Your task is to take a topic and improve it to ensure the best image results from an image search API like Unsplash. Follow these steps:
|
125 |
+
|
126 |
+
1. **Normalize the input**: Convert all text to lowercase and remove special characters (except for spaces).
|
127 |
+
2. **Add more descriptive terms**: If the query is broad (e.g., "nature"), add more specific keywords like "landscape" or "outdoor" to help refine the search.
|
128 |
+
3. **Use synonyms and related terms**: For terms that could have multiple meanings or common synonyms, expand the query to include variations. For example, if the user queries "car", you can add "vehicle" or "automobile".
|
129 |
+
4. **Specify style and tone**: If the user provides a vague description, suggest adding words to define the style or mood of the image, such as "peaceful", "dramatic", or "colorful".
|
130 |
+
5. **Categorize the query**: If applicable, categorize the query into domains like "nature", "architecture", or "people" and add related terms (e.g., "urban", "portrait", "scenic").
|
131 |
+
|
132 |
+
**Example Inputs and Outputs:**
|
133 |
+
|
134 |
+
1. Input: "sunset over a beach"
|
135 |
+
Output: "sunset beach ocean horizon landscape"
|
136 |
+
|
137 |
+
2. Input: "car"
|
138 |
+
Output: "car vehicle automobile road transport"
|
139 |
+
|
140 |
+
3. Input: "nature"
|
141 |
+
Output: "nature landscape outdoor scenic green"
|
142 |
+
|
143 |
+
Topic: {state['topic']}
|
144 |
+
"""
|
145 |
+
|
146 |
+
url = "https://api.pexels.com/v1/search"
|
147 |
+
|
148 |
+
params = {
|
149 |
+
"query": model.invoke(prompt).content,
|
150 |
+
"per_page": 5,
|
151 |
+
"page": 1
|
152 |
+
}
|
153 |
+
|
154 |
+
headers = {
|
155 |
+
"Authorization": ssm.get_parameter(Name="PEXEL_API_KEY", WithDecryption=True)['Parameter']['Value']
|
156 |
+
}
|
157 |
+
|
158 |
+
response = requests.get(url, headers=headers, params=params)
|
159 |
+
if response.status_code == 200:
|
160 |
+
data = response.json()
|
161 |
+
urls = []
|
162 |
+
for _, photo in enumerate(data['photos']):
|
163 |
+
urls.append(photo['url'])
|
164 |
+
|
165 |
+
return Command(update={"image_url": urls}, goto=END)
|
166 |
+
return Command(goto=END)
|
167 |
+
|
168 |
+
class State(TypedDict):
|
169 |
+
topic: str
|
170 |
+
platform: str
|
171 |
+
tips: str
|
172 |
+
tavily_results: List[dict]
|
173 |
+
post: str
|
174 |
+
engagement_score: int
|
175 |
+
tone_score: int
|
176 |
+
clarity_score: int
|
177 |
+
image_url: str
|
178 |
+
|
179 |
+
model = ChatGoogleGenerativeAI(
|
180 |
+
model="gemini-1.5-flash",
|
181 |
+
temperature=0,
|
182 |
+
max_tokens=None,
|
183 |
+
timeout=None,
|
184 |
+
max_retries=2,
|
185 |
+
google_api_key=ssm.get_parameter(Name="GOOGLE_API_KEY", WithDecryption=True)['Parameter']['Value']
|
186 |
+
)
|
187 |
+
|
188 |
+
workflow = StateGraph(State)
|
189 |
+
workflow.add_node("get_tips", get_platform_tips)
|
190 |
+
workflow.add_node("web_search", web_search)
|
191 |
+
workflow.add_node("generate_post", generate_social_media_post)
|
192 |
+
workflow.add_node("evaluate_engagement", evaluate_engagement)
|
193 |
+
workflow.add_node("evaluate_tone", evaluate_tone)
|
194 |
+
workflow.add_node("evaluate_clarity", evaluate_clarity)
|
195 |
+
workflow.add_node("revise_if_needed", revise_if_needed)
|
196 |
+
workflow.add_node("get_image", fetch_image)
|
197 |
+
|
198 |
+
workflow.add_edge(START, "get_tips")
|
199 |
+
graph = workflow.compile()
|
app.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import agent as ag
|
3 |
+
|
4 |
+
st.markdown("<h1 style='text-align: center;'>Social Media Content Generator</h1>", unsafe_allow_html=True)
|
5 |
+
|
6 |
+
with st.form("platform"):
|
7 |
+
topic = st.text_input(label="Topic")
|
8 |
+
platform = st.radio(label="Select a platform", options=["LinkedIn", "Instagram"])
|
9 |
+
|
10 |
+
if st.form_submit_button("Generate Content", use_container_width=True):
|
11 |
+
if topic:
|
12 |
+
with st.spinner(text="In progress...", show_time=True):
|
13 |
+
input_data = {"topic": topic, "platform": platform}
|
14 |
+
output = ag.graph.invoke(input_data)
|
15 |
+
st.markdown(output['post'])
|
16 |
+
markdown_links = " ".join([f"[Image {i+1}]({url})" for i, url in enumerate(output['image_url'])])
|
17 |
+
st.markdown(f"**Image URLs:** {markdown_links}")
|
18 |
+
else:
|
19 |
+
st.error("Please provide a topic.")
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain-google-genai == 2.0.11
|
2 |
+
dotenv == 0.9.9
|
3 |
+
langchain-community == 0.3.19
|
4 |
+
langgraph == 0.3.8
|
5 |
+
streamlit == 1.43.2
|
6 |
+
boto3 == 1.37.13
|