import os import subprocess import random import time from typing import Dict, List, Tuple from datetime import datetime import logging import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from huggingface_hub import InferenceClient, cached_download # --- Configuration --- VERBOSE = True # Enable verbose logging MAX_HISTORY = 5 # Maximum history turns to keep MAX_TOKENS = 2048 # Maximum tokens for LLM responses TEMPERATURE = 0.7 # Temperature for LLM responses TOP_P = 0.8 # Top-p (nucleus sampling) for LLM responses REPETITION_PENALTY = 1.5 # Repetition penalty for LLM responses MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1" # Name of the LLM model API_KEY = "YOUR_API_KEY" # Replace with your actual Hugging Face API key # --- Logging Setup --- logging.basicConfig( filename="app.log", level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s", ) # --- Agents --- agents = [ "WEB_DEV", "AI_SYSTEM_PROMPT", "PYTHON_CODE_DEV", "DATA_SCIENCE", "UI_UX_DESIGN", ] # --- Prompts --- PREFIX = """ {date_time_str} Purpose: {purpose} Agent: {agent_name} """ LOG_PROMPT = """ PROMPT: {content} """ LOG_RESPONSE = """ RESPONSE: {resp} """ # --- Functions --- def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 2) -> str: prompt = "" for user_prompt, bot_response in history[-max_history_turns:]: prompt += f"Human: {user_prompt}\nAssistant: {bot_response}\n" prompt += f"Human: {message}\nAssistant:" return prompt def generate( prompt: str, history: List[Tuple[str, str]], agent_name: str = agents[0], sys_prompt: str = "", temperature: float = TEMPERATURE, max_new_tokens: int = MAX_TOKENS, top_p: float = TOP_P, repetition_penalty: float = REPETITION_PENALTY, ) -> str: # Load model and tokenizer model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) # Create a text generation pipeline generator = pipeline("text-generation", model=model, tokenizer=tokenizer) # Prepare the full prompt date_time_str = datetime.now().strftime("%Y-%m-%d %H:%M:%S") full_prompt = PREFIX.format( date_time_str=date_time_str, purpose=sys_prompt, agent_name=agent_name ) + format_prompt(prompt, history) if VERBOSE: logging.info(LOG_PROMPT.format(content=full_prompt)) # Generate response response = generator( full_prompt, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True )[0]['generated_text'] # Extract the assistant's response assistant_response = response.split("Assistant:")[-1].strip() if VERBOSE: logging.info(LOG_RESPONSE.format(resp=assistant_response)) return assistant_response def main(): with gr.Blocks() as demo: gr.Markdown("## FragMixt: The No-Code Development Powerhouse") gr.Markdown("### Your AI-Powered Development Companion") # Chat Interface chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel") # Input Components message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!") purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?") agent_name = gr.Dropdown(label="Agents", choices=[s for s in agents], value=agents[0], interactive=True) sys_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True) temperature = gr.Slider(label="Temperature", value=TEMPERATURE, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs") max_new_tokens = gr.Slider(label="Max new tokens", value=MAX_TOKENS, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens") top_p = gr.Slider(label="Top-p (nucleus sampling)", value=TOP_P, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens") repetition_penalty = gr.Slider(label="Repetition penalty", value=REPETITION_PENALTY, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens") # Button to submit the message submit_button = gr.Button(value="Send") # Project Explorer Tab with gr.Tab("Project Explorer"): project_path = gr.Textbox(label="Project Path", placeholder="/home/user/app/current_project") explore_button = gr.Button(value="Explore") project_output = gr.Textbox(label="File Tree", lines=20) # Chat App Logic Tab with gr.Tab("Chat App"): history = gr.State([]) examples = [ ["What is the purpose of this AI agent?", "I am designed to assist with no-code development tasks."], ["Can you help me generate a Python function to calculate the factorial of a number?", "Sure! Here is a Python function to calculate the factorial of a number:"], ["Generate a simple HTML page with a heading and a paragraph.", "```html\n\n\n
\nThis is a simple paragraph.
\n\n\n```"], ["Create a basic SQL query to select all data from a table named 'users'.", "```sql\nSELECT * FROM users;\n```"], ["Design a user interface for a mobile app that allows users to track their daily expenses.", "Here's a basic UI design for a mobile expense tracker app:\n\n**Screen 1: Home**\n- Top: App Name and Balance Display\n- Middle: List of Recent Transactions (Date, Description, Amount)\n- Bottom: Buttons for Add Expense, Add Income, View Categories\n\n**Screen 2: Add Expense**\n- Input fields for Date, Category, Description, Amount\n- Buttons for Save, Cancel\n\n**Screen 3: Expense Categories**\n- List of expense categories (e.g., Food, Transportation, Entertainment)\n- Option to add/edit categories\n\n**Screen 4: Reports**\n- Charts and graphs to visualize spending by category, date range, etc.\n- Filters to customize the reports"], ] def chat(purpose: str, message: str, agent_name: str, sys_prompt: str, temperature: float, max_new_tokens: int, top_p: float, repetition_penalty: float, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]]]: """Handles the chat interaction.""" response = generate(message, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty) history.append((message, response)) return history, history submit_button.click(chat, inputs=[purpose, message, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history], outputs=[chatbot, history]) # Project Explorer Logic def explore_project(project_path: str) -> str: """Explores the project directory and returns a file tree.""" try: tree = subprocess.check_output(["tree", project_path]).decode("utf-8") return tree except Exception as e: return f"Error exploring project: {e}" explore_button.click(explore_project, inputs=[project_path], outputs=[project_output]) demo.launch() if __name__ == "__main__": main() ```