import os import subprocess import random from huggingface_hub import InferenceClient import gradio as gr from safe_search import safe_search from i_search import google from i_search import i_search as i_s from datetime import datetime now = datetime.now() date_time_str = now.strftime("%Y-%m-%d %H:%M:%S") client = InferenceClient( "mistralai/Mixtral-8x7B-Instruct-v0.1" ) ############################################ VERBOSE = True MAX_HISTORY = 100 #MODEL = "gpt-3.5-turbo" # "gpt-4" def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def run_gpt( prompt_template, stop_tokens, max_tokens, purpose, **prompt_kwargs, ): seed = random.randint(1,1111111111111111) print (seed) generate_kwargs = dict( temperature=1.0, max_new_tokens=2096, top_p=0.99, repetition_penalty=1.0, do_sample=True, seed=seed, ) content = PREFIX.format( date_time_str=date_time_str, purpose=purpose, safe_search=safe_search, ) + prompt_template.format(**prompt_kwargs) if VERBOSE: print(LOG_PROMPT.format(content)) #formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) #formatted_prompt = format_prompt(f'{content}', history) stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False) resp = "" for response in stream: resp += response.token.text if VERBOSE: print(LOG_RESPONSE.format(resp)) return resp def compress_history(purpose, task, history, directory): resp = run_gpt( COMPRESS_HISTORY_PROMPT, stop_tokens=["observation:", "task:", "action:", "thought:"], max_tokens=512, purpose=purpose, task=task, history=history, ) history = "observation: {}\n".format(resp) return history def call_search(purpose, task, history, directory, action_input): print("CALLING SEARCH") try: if "http" in action_input: if "<" in action_input: action_input = action_input.strip("<") if ">" in action_input: action_input = action_input.strip(">") response = i_s(action_input) #response = google(search_return) print(response) history += "observation: search result is: {}\n".format(response) else: history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n" except Exception as e: history += "observation: {}'\n".format(e) return "MAIN", None, history, task def call_main(purpose, task, history, directory, action_input): resp = run_gpt( ACTION_PROMPT, stop_tokens=["observation:", "task:", "action:","thought:"], max_tokens=2096, purpose=purpose, task=task, history=history, ) lines = resp.strip().strip("\n").split("\n") for line in lines: if line == "": continue if line.startswith("thought: "): history += "{}\n".format(line) elif line.startswith("action: "): action_name, action_input = parse_action(line) print (f'ACTION_NAME :: {action_name}') print (f'ACTION_INPUT :: {action_input}') history += "{}\n".format(line) if "COMPLETE" in action_name or "COMPLETE" in action_input: task = "END" return action_name, action_input, history, task else: return action_name, action_input, history, task else: history += "{}\n".format(line) #history += "observation: the following command did not produce any useful output: '{}', I need to check the commands syntax, or use a different command\n".format(line) #return action_name, action_input, history, task #assert False, "unknown action: {}".format(line) return "MAIN", None, history, task def call_set_task(purpose, task, history, directory, action_input): task = run_gpt( TASK_PROMPT, stop_tokens=[], max_tokens=64, purpose=purpose, task=task, history=history, ).strip("\n") history += "observation: task has been updated to: {}\n".format(task) return "MAIN", None, history, task def end_fn(purpose, task, history, directory, action_input): task = "END" return "COMPLETE", "COMPLETE", history, task NAME_TO_FUNC = { "MAIN": call_main, "UPDATE-TASK": call_set_task, "SEARCH": call_search, "COMPLETE": end_fn, } def run_action(purpose, task, history, directory, action_name, action_input): print(f'action_name::{action_name}') try: if "RESPONSE" in action_name or "COMPLETE" in action_name: action_name="COMPLETE" task="END" return action_name, "COMPLETE", history, task # compress the history when it is long if len(history.split("\n")) > MAX_HISTORY: if VERBOSE: print("COMPRESSING HISTORY") history = compress_history(purpose, task, history, directory) if not action_name in NAME_TO_FUNC: action_name="MAIN" if action_name == "" or action_name == None: action_name="MAIN" assert action_name in NAME_TO_FUNC print("RUN: ", action_name, action_input) return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input) except Exception as e: history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n" return "MAIN", None, history, task def run(purpose,history): #print(purpose) #print(hist) task=None directory="./" if history: history=str(history).strip("[]") if not history: history = "" action_name = "UPDATE-TASK" if task is None else "MAIN" action_input = None while True: print("") print("") print("---") print("purpose:", purpose) print("task:", task) print("---") print(history) print("---") action_name, action_input, history, task = run_action( purpose, task, history, directory, action_name, action_input, ) yield (history) #yield ("",[(purpose,history)]) if task == "END": return (history) #return ("", [(purpose,history)]) ################################################ def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt agents =[ "WEB_DEV", "AI_SYSTEM_PROMPT", "PYTHON_CODE_DEV" ] def generate( prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): seed = random.randint(1,1111111111111111) agent=prompts.WEB_DEV if agent_name == "WEB_DEV": agent = prompts.WEB_DEV if agent_name == "AI_SYSTEM_PROMPT": agent = prompts.AI_SYSTEM_PROMPT if agent_name == "PYTHON_CODE_DEV": agent = prompts.PYTHON_CODE_DEV system_prompt=agent temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=seed, ) formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output additional_inputs=[ gr.Dropdown( label="Agents", choices=[s for s in agents], value=agents[0], interactive=True, ), gr.Textbox( label="System Prompt", max_lines=1, interactive=True, ), gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=1048*10, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ), ] examples = [ ["Help me set up TypeScript configurations and integrate ts-loader in my existing React project.", "Update Webpack Configurations", "Install Dependencies", "Configure Ts-Loader", "TypeChecking Rules Setup", "React Specific Settings", "Compilation Options", "Test Runner Configuration"], ["Guide me through building a serverless microservice using AWS Lambda and API Gateway, connecting to DynamoDB for storage.", "Set Up AWS Account", "Create Lambda Function", "APIGateway Integration", "Define DynamoDB Table Scheme", "Connect Service To DB", "Add Authentication Layers", "Monitor Metrics and Set Alarms"], ["Migrate our current monolithic PHP application towards containerized services using Docker and Kubernetes for scalability.", "Architectural Restructuring Plan", "Containerisation Process With Docker", "Service Orchestration With Kubernetes", "Load Balancing Strategies", "Persistent Storage Solutions", "Network Policies Enforcement", "Continuous Integration / Continuous Delivery"], ["Provide guidance on integrating WebAssembly modules compiled from C++ source files into an ongoing web project.", "Toolchain Selection (Emscripten vs. LLVM)", "Setting Up Compiler Environment", ".cpp Source Preparation", "Module Building Approach", "Memory Management Considerations", "Performance Tradeoffs", "Seamless Web Assembly Embedding"] ] ''' gr.ChatInterface( fn=run, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), title="Mixtral 46.7B\nMicro-Agent\nInternet Search
development test", examples=examples, concurrency_limit=20, with gr.Blocks() as ifacea: gr.HTML("""TEST""") ifacea.launch() ).launch() with gr.Blocks() as iface: #chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), chatbot=gr.Chatbot() msg = gr.Textbox() with gr.Row(): submit_b = gr.Button() clear = gr.ClearButton([msg, chatbot]) submit_b.click(run, [msg,chatbot],[msg,chatbot]) msg.submit(run, [msg, chatbot], [msg, chatbot]) iface.launch() ''' gr.ChatInterface( fn=run, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), title="Mixtral 46.7B\nMicro-Agent\nInternet Search
development test", examples=examples, concurrency_limit=20, ).launch(show_api=False)