import gradio as gr import os import json import logging from transformers import pipeline import utils # Ensure this import is present # Setup logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) FILE_DIR = os.path.dirname(os.path.abspath(__file__)) EXAMPLES_PATH = os.path.join(FILE_DIR, 'examples.json') OUTPUT_DIR = os.path.join(os.path.dirname(FILE_DIR), "auto_gpt_workspace") # Create output directory if it doesn't exist if not os.path.exists(OUTPUT_DIR): os.makedirs(OUTPUT_DIR) # Custom CSS for styling CSS = """ #chatbot {font-family: monospace;} #files .generating {display: none;} #files .min {min-height: 0px;} """ # UI Components def get_api_key(): return gr.Textbox(label="Hugging Face API Key", type="password") def get_ai_name(): return gr.Textbox(label="AI Name", placeholder="e.g. Entrepreneur-GPT") def get_ai_role(): return gr.Textbox(label="AI Role", placeholder="e.g. an AI designed to autonomously develop and run businesses.") def get_description(): return gr.Textbox(label="Project Description", placeholder="Enter a brief description of the project.") def get_top_5_goals(): return gr.Dataframe(row_count=(5, "fixed"), col_count=(1, "fixed"), headers=["AI Goals - Enter up to 5"], type="array") def get_inferred_tasks(): return gr.Textbox(label="Inferred Tasks", interactive=False) def get_generated_files(): """Get HTML element to display generated files.""" files_list = utils.format_directory(OUTPUT_DIR) # This function should list files in the directory return gr.HTML(f"
{files_list}
")
def get_download_btn():
"""Get download all files button."""
return gr.Button("Download All Files", elem_id="download-btn")
class AutoAPI:
def __init__(self, huggingface_key, ai_name, ai_role, top_5_goals):
self.huggingface_key = huggingface_key
self.ai_name = ai_name
self.ai_role = ai_role
self.top_5_goals = top_5_goals
# Replace 'your-model-name' with a valid model identifier
self.nlp_model = pipeline("text2text-generation", model="your-actual-model-name")
def infer_tasks(self, description):
# Use the NLP model to generate tasks based on the description
tasks = self.nlp_model(description)
return tasks[0]['generated_text'].split(',')
def start(huggingface_key, ai_name, ai_role, top_5_goals, description):
try:
auto_api = AutoAPI(huggingface_key, ai_name, ai_role, top_5_goals)
logger.info("AutoAPI started with AI Name: %s, AI Role: %s", ai_name, ai_role)
# Infer tasks based on the role and description
tasks = auto_api.infer_tasks(description)
logger.info("Inferred tasks: %s", tasks)
return gr.Column(visible=False), gr.Column(visible=True), gr.update(value=tasks)
except Exception as e:
logger.error("Failed to start AutoAPI: %s", str(e))
return gr.Column(visible=True), gr.Column(visible=False), gr.update(value=[])
# Main Gradio Interface
with gr.Blocks(css=CSS) as demo:
gr.Markdown("# AutoGPT Task Inference")
with gr.Row():
api_key = get_api_key()
ai_name = get_ai_name()
ai_role = get_ai_role()
description = get_description()
top_5_goals = get_top_5_goals()
start_btn = gr.Button("Start")
main_pane = gr.Column(visible=False)
setup_pane = gr.Column(visible=True)
inferred_tasks = get_inferred_tasks()
start_btn.click(
start,
inputs=[api_key, ai_name, ai_role, top_5_goals, description],
outputs=[setup_pane, main_pane, inferred_tasks]
)
with main_pane:
get_generated_files()
get_download_btn()
# Launch the Gradio app
if __name__ == "__main__":
demo.launch()