abreza commited on
Commit
1c6c14b
·
1 Parent(s): b27b04c
Files changed (1) hide show
  1. app.py +55 -2
app.py CHANGED
@@ -1,18 +1,21 @@
1
  import os
2
  import shutil
3
  import tempfile
 
 
4
 
5
  import gradio as gr
6
  import numpy as np
7
  import rembg
8
  import spaces
9
  import torch
10
- from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
11
  from einops import rearrange
12
  from huggingface_hub import hf_hub_download
13
  from omegaconf import OmegaConf
14
  from PIL import Image
15
  from pytorch_lightning import seed_everything
 
16
  from torchvision.transforms import v2
17
  from tqdm import tqdm
18
 
@@ -22,6 +25,26 @@ from src.utils.infer_util import (remove_background, resize_foreground)
22
  from src.utils.mesh_util import save_glb, save_obj
23
  from src.utils.train_util import instantiate_from_config
24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  def find_cuda():
27
  cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
@@ -52,7 +75,7 @@ def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexi
52
 
53
  def check_input_image(input_image):
54
  if input_image is None:
55
- raise gr.Error("No image uploaded!")
56
 
57
 
58
  def preprocess(input_image, do_remove_background):
@@ -125,6 +148,21 @@ def make3d(images):
125
  return mesh_fpath, mesh_glb_fpath
126
 
127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
  # Configuration
129
  cuda_path = find_cuda()
130
  config_path = 'configs/instant-mesh-large.yaml'
@@ -166,6 +204,21 @@ model.load_state_dict(state_dict, strict=True)
166
 
167
  model = model.to(device)
168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169
  print('Loading Finished!')
170
 
171
  # Gradio UI
 
1
  import os
2
  import shutil
3
  import tempfile
4
+ import time
5
+ from os import path
6
 
7
  import gradio as gr
8
  import numpy as np
9
  import rembg
10
  import spaces
11
  import torch
12
+ from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, StableDiffusionXLPipeline, LCMScheduler
13
  from einops import rearrange
14
  from huggingface_hub import hf_hub_download
15
  from omegaconf import OmegaConf
16
  from PIL import Image
17
  from pytorch_lightning import seed_everything
18
+ from safetensors.torch import load_file
19
  from torchvision.transforms import v2
20
  from tqdm import tqdm
21
 
 
25
  from src.utils.mesh_util import save_glb, save_obj
26
  from src.utils.train_util import instantiate_from_config
27
 
28
+ cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
29
+ os.environ["TRANSFORMERS_CACHE"] = cache_path
30
+ os.environ["HF_HUB_CACHE"] = cache_path
31
+ os.environ["HF_HOME"] = cache_path
32
+
33
+ torch.backends.cuda.matmul.allow_tf32 = True
34
+
35
+
36
+ class timer:
37
+ def __init__(self, method_name="timed process"):
38
+ self.method = method_name
39
+
40
+ def __enter__(self):
41
+ self.start = time.time()
42
+ print(f"{self.method} starts")
43
+
44
+ def __exit__(self, exc_type, exc_val, exc_tb):
45
+ end = time.time()
46
+ print(f"{self.method} took {str(round(end - self.start, 2))}s")
47
+
48
 
49
  def find_cuda():
50
  cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
 
75
 
76
  def check_input_image(input_image):
77
  if input_image is None:
78
+ raise gr.Error("No image selected!")
79
 
80
 
81
  def preprocess(input_image, do_remove_background):
 
148
  return mesh_fpath, mesh_glb_fpath
149
 
150
 
151
+ @spaces.GPU
152
+ def process_image(num_images, prompt):
153
+ global pipe
154
+ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
155
+ return pipe(
156
+ prompt=[prompt]*num_images,
157
+ generator=torch.Generator().manual_seed(123),
158
+ num_inference_steps=1,
159
+ guidance_scale=0.,
160
+ height=int(512),
161
+ width=int(512),
162
+ timesteps=[800]
163
+ ).images
164
+
165
+
166
  # Configuration
167
  cuda_path = find_cuda()
168
  config_path = 'configs/instant-mesh-large.yaml'
 
204
 
205
  model = model.to(device)
206
 
207
+ # Load text-to-image model
208
+ print('Loading text-to-image model ...')
209
+ if not path.exists(cache_path):
210
+ os.makedirs(cache_path, exist_ok=True)
211
+
212
+ pipe = StableDiffusionXLPipeline.from_pretrained(
213
+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16)
214
+ pipe.to(device="cuda", dtype=torch.bfloat16)
215
+
216
+ unet_state = load_file(hf_hub_download(
217
+ "ByteDance/Hyper-SD", "Hyper-SDXL-1step-Unet.safetensors"), device="cuda")
218
+ pipe.unet.load_state_dict(unet_state)
219
+ pipe.scheduler = LCMScheduler.from_config(
220
+ pipe.scheduler.config, timestep_spacing="trailing")
221
+
222
  print('Loading Finished!')
223
 
224
  # Gradio UI